Pleiotropic effects of carbocysteine in patients with COPD

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

Chronic obstructive pulmonary disease (COPD) is a heterogenic obstructive disease with a wide range of clinical manifestations, which is the 3rd leading cause of death among patients worldwide. Based on the available therapeutic strategies for COPD patients, mucoactive therapy, including carbocysteine, has received intensive attention from specialists. In this review, we analyzed data from randomized clinical trials (RCTs) that expand our knowledge of the mechanisms of effect of mucoactive carbocysteine therapy on the frequency and characteristics of exacerbation in COPD patients. Carbocysteine, being a powerful mucoregulator, actively influences mucins/ciliary cells, oppose viral/bacterial infections, eliminates reactive oxygen species (antioxidant effect), and has a marked cytoprotective effect. The pleotropic effect of carbocysteine may also include the expression of histone deacetylase-2, which increases receptor sensitivity to systemic and inhaled glucocorticosteroids with evident anti-inflammatory effects. Our review will demonstrate that long-term carbocysteine therapy of COPD patients is well tolerated, has a beneficial safety profile and improves the quality of life of those patients.

Толық мәтін

Рұқсат жабық

Авторлар туралы

Sergey Babak

Russian University of Medicine

Хат алмасуға жауапты Автор.
Email: sergbabak@mail.ru
ORCID iD: 0000-0002-6571-1220
SPIN-код: 5213-3620
Scopus Author ID: 45560913500
ResearcherId: KAO-3183-2024

Dr. Sci. (Med.), Associate Professor, Pulmonologist, Professor, Department of Phthisiology and Pulmonology, Research Institute of Clinical Medicine n.a. N.A. Semashko

Ресей, Moscow

Marina Gorbunova

Russian University of Medicine

Email: mgorb@mail.ru
ORCID iD: 0000-0002-2039-0072
Scopus Author ID: 45561369300

Dr. Sci. (Med.), Pulmonologist, Associate Professor at the Department of Phthisiology and Pulmonology, Research and Educational Institute of Clinical Medicine named after N.A. Semashko

Ресей, Moscow

Andrey Malyavin

Russian University of Medicine

Email: maliavin@mail.ru
ORCID iD: 0000-0002-6128-5914
SPIN-код: 8264-5394
Scopus Author ID: 6701876872

Dr. Sci. (Med.), Pulmonologist, Professor at the Department of Phthisiology and Pulmonology, Research and Educational Institute of Clinical Medicine named after N.A. Semashko, Russian University of Medicine; Secretary General of the Russian Scientific Medical Society of Therapists; Chief External Expert in Pulmonology of the Ministry of Healthcare of the Russian Federation for the Central Federal District

Ресей, Moscow

Әдебиет тізімі

  1. Yan X., Song Y., Shen C., et al. Mucoactive and antioxidant medicines for COPD: consensus of a group of Chinese pulmonary physicians. Int J Chron Obstruct Pulmon Dis. 2017;12:803–12. doi: 10.2147/COPD.S114423.
  2. Vogelmeier C.F., Roman-Rodriguez M., Singh D., et al. Goals of COPD treatment: Focus on symptoms and exacerbations. Respir Med. 2020;166:105938. doi: 10.1016/j.rmed.2020.105938.
  3. GBD 2017 DALYs and HALE Collaborators. Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1859–922. doi: 10.1016/S0140-6736(18)32335-3.
  4. Decramer M., Janssens W. Mucoactive therapy in COPD. Eur Respir Rev. 2010;19(116):134–40. doi: 10.1183/09059180.00003610.
  5. Cazzola M., Rogliani P., Calzetta L., et al. Impact of Mucolytic Agents on COPD Exacerbations: A Pair-wise and Network Meta-analysis. COPD. 2017;14(5):552–63. doi: 10.1080/15412555.2017.1347918.
  6. Global strategy for prevention, diagnosis and management of COPD: 2025 Report. [Electronic resource], Date of access: 26.02.2025. URL: https://goldcopd.org/wp-content/uploads/2024/11/GOLD-2025-Report-v1.0-15Nov2024_WMV.pdf.
  7. Yan X., Song Y., Shen C., et al. Mucoactive and antioxidant medicines for COPD: consensus of a group of Chinese pulmonary physicians. Int J Chron Obstruct Pulmon Dis. 2017;12:80312. doi: 10.2147/COPD.S114423.
  8. Mitchell S.C., Steventon G.B. S-carboxymethyl-L-cysteine. Drug Metab Rev. 2012;44(2):129–47. doi: 10.3109/03602532.2011.631015.
  9. Colombo B., Turconi P., Daffonchio L., et al. Stimulation of Cl- secretion by the mucoactive drug S-carboxymethylcysteine-lysine salt in the isolated rabbit trachea. Eur Respir J. 1994;7(9):1622–8. doi: 10.1183/09031936.94.07091622.
  10. Brown D.T. Carbocysteine. Drug Intell Clin Pharm. 1988;22(7–8):603–8. doi: 10.1177/106002808802200721.
  11. Waters J.K., Mossine V.V., Kelley S.P., Mawhinney T.P. Structural and Functional Studies of S-(2-Carboxyethyl)-L-Cysteine and S-(2-Carboxyethyl)-l-Cysteine Sulfoxide. Molecules. 2022;27(16):5317. doi: 10.3390/molecules27165317.
  12. Song D., Iverson E., Kaler L., et al. MUC5B mobilizes and MUC5AC spatially aligns mucociliary transport on human airway epithelium. Sci Adv. 2022;8(47):eabq5049. doi: 10.1126/sciadv.abq5049.
  13. Ikeuchi Y., Kogiso H., Hosogi S., et al. Carbocisteine stimulated an increase in ciliary bend angle via a decrease in [Cl-]i in mouse airway cilia. Pflugers Arch. 2019;471(2):365–80. doi: 10.1007/s00424-018-2212-2.
  14. Ishibashi Y., Takayama G., Inouye Y., Taniguchi A. Carbocisteine normalizes the viscous property of mucus through regulation of fucosylated and sialylated sugar chain on airway mucins. Eur J Pharmacol. 2010;641(2–3):226–8. doi: 10.1016/j.ejphar.2010.05.045.
  15. Guo-Parke H., Linden D., Weldon S., Ki et al. Mechanisms of Virus-Induced Airway Immunity Dysfunction in the Pathogenesis of COPD Disease, Progression, and Exacerbation. Front Immunol. 2020;11:1205. doi: 10.3389/fimmu.2020.01205.
  16. Yasuda H., Yamaya M., Sasaki T., et al. Carbocisteine inhibits rhinovirus infection in human tracheal epithelial cells. Eur Respir J. 2006;28(1):51–8. doi: 10.1183/09031936.06.00058505.
  17. Asada M., Yoshida M., Hatachi Y., et al. l-carbocisteine inhibits respiratory syncytial virus infection in human tracheal epithelial cells. Respir Physiol Neurobiol. 2012;180(1):112–8. doi: 10.1016/j.resp.2011.10.017.
  18. Yamaya M., Nishimura H., Shinya K., et al. Inhibitory effects of carbocisteine on type A seasonal influenza virus infection in human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2010;299(2):L160–8. doi: 10.1152/ajplung.00376.2009.
  19. Pace E., Cerveri I., Lacedonia D., et al. Clinical Efficacy of Carbocysteine in COPD: Beyond the Mucolytic Action. Pharmaceutics. 2022;14(6):1261. doi: 10.3390/pharmaceutics14061261.
  20. Braga P.C., Scaglione F., Scarpazza G., et al. Comparison between penetration of amoxicillin combined with carbocysteine and amoxicillin alone in pathological bronchial secretions and pulmonary tissue. Int J Clin Pharmacol Res. 1985;5(5):331–40. [PMID: 4066083].
  21. Christenson S.A., Smith B.M., Bafadhel M., Putcha N. Chronic obstructive pulmonary disease. Lancet. 2022;399(10342):2227–42. doi: 10.1016/S0140-6736(22)00470-6.
  22. Garavaglia M.L., Bononi E., Dossena S., et al. S-CMC-Lys protective effects on human respiratory cells during oxidative stress. Cell Physiol Biochem. 2008;22(5–6):455–64. doi: 10.1159/000185494.
  23. Bazzini C., Rossetti V., Civello D.A., et al. Short- and long- term effects of cigarette smoke exposure on glutathione homeostasis in human bronchial epithelial cells. Cell Physiol Biochem. 2013;32(7):129–45. doi: 10.1159/000356633.
  24. Hanaoka M., Droma Y., Chen Y., et al. Carbocisteine protects against emphysema induced by cigarette smoke extract in rats. Chest. 2011;139(5):1101–8. doi: 10.1378/chest.10-0920.
  25. Song Y., Lu H.Z., Xu J.R., et al. Carbocysteine restores steroid sensitivity by targeting histone deacetylase 2 in a thiol/GSH-dependent manner. Pharmacol Res. 2015;91:88–98. doi: 10.1016/j.phrs.2014.12.002.
  26. Song Y., Yu P., Lu J.J., et al. A mucoactive drug carbocisteine ameliorates steroid resistance in rat COPD model. Pulm Pharmacol Ther. 2016;39:38–47. doi: 10.1016/j.pupt.2016.06.003.
  27. Pace E., Di Vincenzo S., Ferraro M., et al. Effects of Carbocysteine and Beclomethasone on Histone Acetylation/Deacetylation Processes in Cigarette Smoke Exposed Bronchial Epithelial Cells. J Cell Physiol. 2017;232(10):2851–9. doi: 10.1002/jcp.25710.
  28. Pace E., Ferraro M., Siena L., et al. Cigarette smoke increases Toll-like receptor 4 and modifies lipopolysaccharide-mediated responses in airway epithelial cells. Immunology. 2008;124(3):401–11. doi: 10.1111/j.1365-2567.2007.02788.x.
  29. Brightling C., Greening N. Airway inflammation in COPD: progress to precision medicine. Eur Respir J. 2019;54(2):1900651. doi: 10.1183/13993003.00651-2019.
  30. Zheng J.P., Kang J., Huang S.G., et al. Effect of carbocisteine on acute exacerbation of chronic obstructive pulmonary disease (PEACE Study): a randomised placebo-controlled study. Lancet. 2008;371(9629):2013–8. doi: 10.1016/S0140-6736(08)60869-7.
  31. Decramer M., Rutten-van Mölken M., Dekhuijzen P.N., et al. Effects of N-acetylcysteine on outcomes in chronic obstructive pulmonary disease (Bronchitis Randomized on NAC Cost-Utility Study, BRONCUS): a randomised placebo-controlled trial. Lancet. 2005;365(9470):1552–60. doi: 10.1016/S0140-6736(05)66456-2.
  32. Zeng Z., Yang D., Huang X., Xiao Z. Effect of carbocisteine on patients with COPD: a systematic review and meta-analysis. Int J Chron Obstruct Pulmon Dis. 2017;12:2277–83. doi: 10.2147/COPD.S140603.
  33. Ohnishi H., Tanimoto T., Inaba R., Eitoku M. Efficacy and safety of mucolytics in patients with stable chronic obstructive pulmonary disease: A systematic review and meta-analysis. Respir Investig. 2024;62(6):1168–75. doi: 10.1016/j.resinv.2024.10.004.
  34. Клинические рекомендации. Хроническая обструктивная болезнь легких. 2024–2026 (17.12.2024). ID:603_3. [Электронный ресурс], дата обращения: 09.04.2025. [Clinical guidelines. Chronic obstructive pulmonary disease. 2024–2026 (12/17/2024). ID:603_3. [Electronic resource], accessed: 04/09/2025. (In Russ.)]. URL: https://cr.minzdrav.gov.ru/view-cr/603_3
  35. Государственный реестр лекарственных средств Минздрава России. Инструкция по медицинскому применению лекарственного препарата Касцебене. РУ: ЛП-№(000670)-(РГ-RU) от 06.04.2022. [Электронный ресурс], дата обращения: 09.04.2025. [State Register of Medicines of the Ministry of Health of the Russian Federation. Instructions for medical use of the medicinal product Cascebene. RU: LP-No. (000670) - (RG-RU) dated 06.04.2022. [Electronic resource], date of access: 09.04.2025. (In Russ.)]. URL: https://grls.rosminzdrav.ru/Grls_View_v2.aspx?routingGuid=40688d8d-0a2d-45f4-8fe8-10dc42c334ff.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Graphic representation of the carbocysteine ​​molecule

Жүктеу (14KB)
3. Fig. 2. Graphical representation of the action of carbocysteine ​​in eliminating intranuclear tolerance to corticosteroids

Жүктеу (165KB)

© Bionika Media, 2025