Mechanisms of development of endothelial dysfunction in kidney pathology in children

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

Currently, endothelial dysfunction (ED) is considered as an integral part of the pathogenesis of many chronic diseases. The endothelium is involved in leukocyte recruitment, permeability modulation, inflammation, coagulation, and changes in blood flow in response to disease progression or regression. The kidneys contain different types of endothelium, each with its own specific structural and functional characteristics, as well as being protected by thrombosis, inflammation, and complement regulators. Endothelial damage induced by antibodies, immune cells, or inflammatory cytokines can lead to acute or chronic kidney injury. The relevance of studying the mechanisms of ED in renal pathology is determined by the need to develop new therapeutic strategies aimed at preserving the function of the endothelium and improving the prognosis of the disease. The article provides data on the significance of ED in various kidney pathologies in children, including associated with the result of direct infection with SARS-CoV-2. The analysis included a collection of studies published in PubMed, ProQuest, GoogleScholar, Cochrane, ScienceDirect, Medline, AMED, EMBASE, CINHAL, SportDiscus, Scopus, and eLibrary for 2002–2022.

Негізгі сөздер

Толық мәтін

Рұқсат жабық

Авторлар туралы

Darya Yarovaya

N.N. Silishcheva Regional Children’s Clinical Hospital; Astrakhan State Medical University

Хат алмасуға жауапты Автор.
Email: podkovyrova_dary@list.ru
ORCID iD: 0000-0001-8126-2544

Postgraduate Student, Department of Faculty Pediatrics

Ресей, Astrakhan; Astrakhan

O. Bashkina

Astrakhan State Medical University

Email: podkovyrova_dary@list.ru
ORCID iD: 0000-0003-4168-4851
Ресей, Astrakhan

L. Pakhnova

Astrakhan State Medical University

Email: podkovyrova_dary@list.ru
ORCID iD: 0000-0002-4021-325X
Ресей, Astrakhan

Әдебиет тізімі

  1. Deanfield J.E., Halcox J.P., Rabelink T.J. Endothelial function and dysfunction: testing and clinical relevance. Circulation. 2007;115(10):1285–95. doi: 10.1161/CIRCULATIONAHA.106.652859.
  2. Aird W.C. Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ. Res. 2007;100(2):158–73. doi: 10.1161/01.RES.0000255691.76142.4a.
  3. Pierce R.W., Giuliano J.S., Whitney J.E., et al. Pediatric Organ Dysfunction Information Update Mandate (PODIUM) Collaborative. Endothelial Dysfunction Criteria in Critically Ill Children: The PODIUM Consensus Conference. Pediatrics. 2022;149(1):S97–102. doi: 10.1542/peds.2021-052888o.
  4. Garcia-Bello J.A., Gomez-Diaz R.A., Contreras-Rodriguez A., et al. Endothelial dysfunction in children with chronic kidney disease. Nefrologia (Engl Ed). 2021;41(4):436–45. doi: 10.1016/j.nefroe.2020.10.002
  5. Kharlamova U.V., Il’icheva O.E. State of endothelial function and hemostasis system in patients on hemodialysis. Nephrology (Saint-Petersburg). 2010;14(4):48–52. (In Russ.). doi: 10.24884/1561-6274-2010-14-4-48-52.
  6. Aldamiz-Echevarria L., Andrade F. Asymmetric dimethylarginine, endothelial dysfunction and renal disease. Int J Mol Sci. 2012;13(9):11288–311. doi: 10.3390/ijms130911288.
  7. Kurapova M.V., Nizyamova A.R. Current state of the endothelial dysfunction problem at chronic kidney insufficiency (the literature review). Aspirantskiy Vestnik Povolzhiya. 2013;13(1–2):55–58. (In Russ.). doi: 10.17816/2072-2354.2013.0.1-2.55-58.
  8. Sahin G., Akay O.M., Bal C., et al. The effect of calcineurin inhibitors on endothelial and platelet function in renal transplant patients. Clin Nephrol. 2011;76(3):218–25.
  9. Sutton T.A., Fisher C.J., Molitoris B.A. Microvascular endothelial injury and dysfunction during ischemic acute renal failure. Kidney Int. 2002;62(5):1539–49. doi: 10.1046/j.1523-1755.2002.00631.x.
  10. Kuzmin O.V. Chronic kidney disease and cardiovascular system. Nephrology (Saint-Petersburg). 2007;11(1):28–37. (In Russ.). doi: 10.24884/1561-6274-2007-11-1-28-37.
  11. Lilien M.R., Koomans H.A., Schroder C.H. Hemodialysis acutely impairs endothelial function in children. Pediatr Nephrol. 2005;20(2):200–4. doi: 10.1007/s00467-004-1718-3.
  12. Klawitter J., Reed-Gitomer B.Y., McFann K., et al. Endothelial dysfunction and oxidative stress in polycystic kidney disease. Am J Physiol Renal Physiol. 2014;307(11):F1198–206. doi: 10.1152/ajprenal.00327.2014.
  13. Bogdanyants M.V., Bezrukova D.A., Dzhumagaziev A.A., et al. Medical rehabilitation of a preschool child with an extremely severe course of COVID-19 (clinical case). Astrakhanskii meditsinskii zhurnal=Astrakhan Med J. 2022:17(2):96–101. (In Russ.). doi: 10.48612/agmu/2022.17.2.96.101.
  14. Ertuglu L.A., Kanbay A., Afsar B., et al. COVID-19 and acute kidney injury. COVID-19 ve akut bobrek hasarı. Tuberk Toraks. 2020;68(4):407–18. doi: 10.5578/tt.70010.
  15. Gromova G.G., Verizhnikova L.N., Zhbanova N.V., et al. Kidney damage in the newcoronavirus disease COVID-19. Klinicheskaya nefrologiya. 2021;13(3):17–22.
  16. Evans P.C., Rainger G.E., Mason J.C., et al. Endothelial dysfunction in COVID-19: a position paper of the ESC Working Group for Atherosclerosis and Vascular Biology, and the ESC Council of Basic Cardiovascular Science. Cardiovasc Res. 2020;116(14):2177–84. doi: 10.1093/cvr/cvaa230.
  17. Chousterman B.G., Swirski F.K., Weber G.F. Cytokine storm and sepsis disease pathogenesis. Semin. Immunopathol. 2017;39(5):517–28. doi: 10.1007/s00281-017-0639-8.
  18. Chen X., Zhao B., Qu Y., et al. Detectable Serum Severe Acute Respiratory Syndrome Coronavirus 2 Viral Load (RNAemia) Is Closely Correlated With Drastically Elevated Interleukin 6 Level in Critically Ill Patients With Coronavirus Disease 2019. Clin Infect Dis. 2020;71(8):1937–42. doi: 10.1093/cid/ciaa449.
  19. Nasonov E.L. Immunopathology and immunopharmacotherapy of coronavirus disease 2019 (COVID-19): focus on interleukin 6. Nauchno-prakticheskaya revmatologiya. 2020;58(3):245–61. (In Russ.).
  20. Khomich O.A., Kochetkov S.N., Bartosch B., et al. Redox Biology of Respiratory Viral Infect Virus. 2018;10(8):392. doi: 10.3390/v10080392.
  21. Nagele M.P., Haubner B., Tanner F.C., et al. Endothelial dysfunction in COVID-19: Current findings and therapeutic implications. Atherosclerosis. 2020;314:58–62. doi: 10.1016/j.atherosclerosis.2020.10.014.
  22. Holy E.W., Akhmedov A., Speer T., et al. Carbamylated Low-Density Lipoproteins Induce a Prothrombotic State Via LOX-1: Impact on Arterial Thrombus Formation In Vivo. J Am Coll Cardiol. 2016;68(15):1664–76. doi: 10.1016/j.jacc.2016.07.755.
  23. Dzgoeva F.S., Gatagonova T.M., Dzugkoeva F.S., et al. Role of free radical oxidation in the development of cardiovascular events in chronic renal failure. Terapevticheskii arkhiv. 2010;82(1):51–6 (In Russ.).
  24. Goshua G., Pine A.B., Meizlish M.L., et al. Endotheliopathy in COVID-19-associated coagulopathy: evidence from a single-centre, cross-sectional study. Lancet. Haematol. 2020;7(8):e575–82. doi: 10.1016/S2352-3026(20)30216-7.
  25. Zhou F., Yu T., Du R., et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–62. doi: 10.1016/S0140-6736(20)30566-3.
  26. Legrand M., Bell S., Forni L., et al. Pathophysiology of COVID-19-associated acute kidney injury. Nat Rev Nephrol. 2021;17(11):751–64. doi: 10.1038/s41581-021-00452-0.
  27. Bradley B.T., Maioli H., Johnston R., et al. Histopathology and ultrastructural findings of fatal COVID-19 infections in Washington State: a case series. Lancet. 2020;396(10247):320–32. doi: 10.1016/S0140-6736(20)31305-2.
  28. Batlle D., Soler M.J., Sparks M.A., et al. Acute Kidney Injury in COVID-19: Emerging Evidence of a Distinct Pathophysiology. J Am Soc Nephrol. 2020;31(7):1380–83. doi: 10.1681/ASN.2020040419.
  29. Varga Z., Flammer A.J., Steiger P., et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395(10234):1417–18. doi: 10.1016/S0140-6736(20)30937-5.
  30. Patel B.V., Arachchillage D.J., Ridge C.A., et al. Pulmonary Angiopathy in Severe COVID-19: Physiologic, Imaging, and Hematologic Observations. Am J Respir Crit Care Med. 2020;202(5):690–9. doi: 10.1164/rccm.202004-1412OC.
  31. Leisman D.E., Deutschman C.S., Legrand M. Facing COVID-19 in the ICU: vascular dysfunction, thrombosis, and dysregulated inflammation. Int Care Med. 2020;46(6):1105–108. doi: 10.1007/s00134-020-06059-6.
  32. Pfister F., Vonbrunn E., Ries T., et al. Complement Activation in Kidneys of Patients With COVID-19. Front Immunol. 2021;11:594849. doi: 10.3389/fimmu.2020.594849.
  33. Ince C. The central role of renal microcirculatory dysfunction in the pathogenesis of acute kidney injury. Nephron Clin Pract. 2014;127(1–4):124–28. doi: 10.1159/000363203.
  34. Guo T., Fan Y., Chen M., et al. Cardiovascular Implications of Fatal Outcomes of Patients With Coronavirus Disease 2019 (COVID-19). JAMA. Cardiol. 2020;5(7):811–18. doi: 10.1001/jamacardio.2020.1017.
  35. Taha M., Sano D., Hanoudi S., et al. Platelets and renal failure in the SARS-CoV-2 syndrome. Platelets. 2021;32(1):130–37. doi: 10.1080/09537104.2020.1817361.
  36. Attwell D., Mishra A., Hall C.N., et al. What is a pericyte? J Cereb Blood Flow Metab. 2016;36(2):451–55. doi: 10.1177/0271678X15610340.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bionika Media, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>