PITANIE V MLADENChESTVE I ZDOROV'E VZROSLOGO ChELOVEKA


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

In recent years, the data suggest that nutrition during infancy has significant influence on the risk of chronic non-communicable diseases in adults. The article presents the information about the role of individual food components in early childhood, which make an important contribution to understanding the formation of health of older children and adults, and allow to purposefully justify treatment and prevention programs.

Texto integral

Acesso é fechado

Sobre autores

O. Netrebenko

Yu. Mukhina

Email: mjug@mail.ru

Bibliografia

  1. Amarasekera M., Prescott S., Palmer D. Nutrition In early life, immune-programming and allergies: the role of epigenetics. Asia Pac. Allergy.
  2. Simenthal-Mendia L.,Castaneda A., Rodrigues-Moran M., Guerrero-Romero F. Birth-weight, insulin level and HOMA-IR in newborns at term.Immun ol. 2013; 31: 175-82.
  3. Hales C.N., Barker D.J.N. The thrifty phenotype hypotesis. BMJ. 2001; 60: 5-20.
  4. Sirimi N., Goulis D. Obesity in pregnancy. Hormones. 2010; 9(4): 299-306.
  5. Carvalho M., de Sousa A., Guimaraes I., Guimaraes A.C. Association between birth weight and cardiovascular risk factors in adolescents. Arq. Bras. Cardiol. 2013; 101(1): 9-17.
  6. Baird J., Fisher D., Lucas P. Being big or growing fast: systematic review of size and growth in infancy and later obesity. BMJ. 2005; 331: 929-35.
  7. Leunissen R., Kerkhof G., Hokken-Koelega A. Timing and tempo of first-year rapid growth in relation to cardiovascular and metabolic risk profile in early adulthood. JAMA. 2009; 301((21): 2234-42.
  8. Ekelund U., Ong K., Linne Y., Neovius M., Brage S., Dunger D.B., Wareham N.J., Rössner S. Association of weight gain in infancy and early childhood with metabolic risk in young adults. J. Clin. Endocronol. Metab. 2007; 92: 98-103.
  9. Rolland-Cachera M.F., Peneau S. Growth trajectories associated with adult adiposity. World Rev. Nutr. Diet. 2013; 106: 127-34.
  10. Lamkjaer A., Mlgaard C., Mickaelsen K. Early nutrition impact on the insulin-like growth factor axis and later health consequences. Curr. Opin. Nutr. Metabol. Care. 2012; 15: 285-92.
  11. Roith D.L. The Insulin-like growth factor system. Exp. Diabesity Re. 2003; 4: 205-12.
  12. Skilton M., Marks G., Ayer J., Garden F.L., Garnett S.P., HarmerJ.A., Leeder S.R., Toelle B.G., Webb K., Baur L.A., Celermajer D.S. Weight gain in infancy and vascular risk factors in later childhood. Pediatrics. 2013; 131: e1821-28.
  13. Koletzko B., von Kries R., Closa R., Escribano J., Scaglioni S., Giovannini M., Beyer J., Demmelmair H., Gruszfeld D., Dobrzanska A., Sengier A., Langhendries J.P., Rolland Cachera M.F., Grote V. Lower protein in infant formula is associated with lower weight up to age 2 y: a randomized clinical trial. AJCN. 2009; 89: 1.
  14. Weber M., Grote V., Closa-Monasterolo R., Escribano J., Langhendries J.P., Dain E., Giovannini M., Verduci E., Gruszfeld D., Socha P., Koletzko B. Lower protein content in infant formula reduces BMI and obesity risk at school age: follow-on of randomized trial. AJCN. 2014; 99: 1041-51.
  15. Kelly D., Mulder E. Microbiom and immunological interaction. Nutrition Rev. 2012; 70(Suppl. 1): 518-30.
  16. Sudo N., Sawamura S., Tanaka K., Aiba Y., Kubo C., Koga Y. The requirement of intestinal bacterial flora for the development of an IgE production system fully susceptible to oral tolerance induction. J. Immunol. 1997; 159: 1739-45.
  17. Cani P., Neyrinck A., Fava F., Knauf C., Burcelin R.G., Tuohy K.M., Gibson G.R., Delzenne N.M. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxemia. Diabetologia. 2007; 50: 2374-83.
  18. Boerner B.P., Sarvetnick N.E. Type 1 diabetes: the role of intestinal microbiom in human and mice. Ann. NY Acad. Sci. 2012; 243: 1243-50.
  19. Dimmitt R., Staley E., Chuang G., Tanner S.M., Soltau T.D., Lorenz R.G. Role of postnatal acquisition of the intestinal microbiom in the early development of immune function. JPGN. 2010; 51(3): 262-73.
  20. Mauro A., Neu J., Riezzo G., Raimondi F., Martinelli D., Francavilla R., Indrio F. Gastrointestinal function development and microbiota. Italian J. of Ped. 2013; 39: 15-27.
  21. Cox L., Yamanishi S., Sohn J., Alexeenko A., Leung J.M., Cho I., Kim S.G., Li H., Gao Z., Mahana D., Zarate Rodriguez J.G., Rogers A.B., Robine N., Loke P., Blaser M.J. Altering the intestinal microbiota during critical developmental window has lasting metabolic consequences. Cell. 2014; 158: 705-21.
  22. Domingues-Bello M., Costello E., Contreras M., Magris M., Hidalgo G., Fierer N., Knight R. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. PNAS. 2010; 107: 11971-75.
  23. Azad M., Konya T., Maughan H., Guttman D.S., Field C.J., Chari R.S., Sears M.R., Becker A.B., Scott J.A., Kozyrskyj A.L. Gut microbiota of healthy Canadian infants: profiles by mode of delivery and infant diet at 4 months. Can. Med. Ass. Journal. 2013; 2: 503-13.
  24. Alderberth I., Lindberg E., Aberg N, Hesselmar B., Saalman R., Strannegard I.L., Wold A.E. Reduced enterobacterial and increased staphylococcal colonization of the infantile bowel: an effect of hygienic lifestyle. Pediatr. Res. 2006; 59: 96-101.
  25. Biasucci G., Benenati B., Morelli L., Bessi E., Boehm G. Cesarean delivery may affect the early biodiversity of intestinal bacteria. J. Nutr. 2008; 138: 1796-800.
  26. Forno E., Onderdonk A., VcCracken J., Litonjua A.A., Laskey D., Delaney M.L., Dubois A.M., Gold D.R., Ryan L.M., Weiss S.T., Celedon J.C. Diversity of the gut microbiota and eczema in early life. Clinical and Molecular Allergy. 2008; 6: 11-20.
  27. James-Roberts St. The Origins, Prevention and Treatment of Infant Crying and Sleeping problems: An Evidence-Based Guide For healthcare Professionals and the Families they Support. New York: Routledge / Talor & Francis Group; 2012.
  28. Weerth C., Fuentes S., Puylaert P., de Vos W.M. Intestinal microbiota of infants with colic: Development and specific signatures. Pediatrics. 2013; 131: 550-58.
  29. Anabrees J., Indrio F., Paes B., AlFaleh K. Probiotics for infantile colic: a systematic review. BMC. Pediactrics. 2013; 13: 186.
  30. Deloose E., Janssen P., Depoortere I., Tack J. The migrating motor complex: control mechanisms and the role in health and disease Nat. Rev. Gastroenterolog., Hepatol. 2012; 10: 1038.
  31. Jacono G., Merolla R. D'Amicco Detal Dig. Liver Dis. 2005; 37(6): 432-38.
  32. Indrio F., Riezzo G., Raimondi F., Bisceglia M., Cavallo L., Francavilla R. Fhe effects of probiotics on feeding tolerances, fowel nafitis and gastorintestal mothility in preterm newborn. J. Pediat. 2008; 152: 801-06.
  33. Тутельен В.А., Стречев В.Б., Суханов Б.П., Кудашева В.А. Микроэлементы в питании здорового и больного человека. М., 2002; 423.
  34. Запруднов А.М., Харитонов Л.А., Царькова О.Н. Элементный дисбаланс у детей с желчекаменной болезнью. Российский вестник перинатологии и педиатрии 2013; 6(58): 67-73.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bionika Media, 2015

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies