ALGORITHM OF THE SELECTION OF ANTIHYPERTENSIVE THERAPY AGAINST THE INVOLVEMENT OF HEART AS A TARGET ORGAN IN ARTERIAL HYPERTENSION


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The article presents algorithms for diagnosing the involvement of heart as the target organ in arterial hypertension. The possibilities of different diagnostic methods are shown; diagnostic criteria and their prognostic significance are provided. The article also discusses the choice of antihypertensive drugs in the presence of heart damage as a target organ, and algorithms for the dynamic observation of such patients. The possibilities and advantages of angiotensin-converting enzyme inhibitors in the treatment of patients with arterial hypertension and heart disease are shown. The pathogenetic mechanisms of the involution of left ventricular hypertrophy and improvement of the elasticity of myocardium are discussed in the context of treatment with an angiotensin-converting enzyme inhibitor lisinopril.

Texto integral

Acesso é fechado

Sobre autores

O. Ostroumova

FSBEI HE MGMSU n.a. A.i. Evdokimov of RMH; FSBEI HE “First MSMU n.a. I.M. Sechenov" of RMH

MD, Prof.at the Faculty Therapy and Occupational Diseases; Prof. at the Department of Clinical Pharmacology and Propaedeutics of Internal Diseases

A. Kochetkov

FSBEI HE MGMSU n.a. A.i. Evdokimov of RMH

Department of Faculty Therapy and Occupational Diseases

M. Lopukhina

SBHCI City Clinical Hospital n.a. E.O. Mukhin of Moscow Healthcare Department

V. Vikent'yev

FSBEI HE MGMSU n.a. A.i. Evdokimov of RMH

Department of Faculty Therapy and Occupational Diseases

A. Abrosimov

FSBEI HE “First MSMU n.a. I.M. Sechenov" of RMH

Department of Clinical Pharmacology and Propaedeutics of internal Diseases

Bibliografia

  1. Mancia G., Fagard R., Narkiewicz K., Redon J., Zanchetti A., Bohm M., Christiaens T., Cifkova R., De Backer G., Dominiczak A., Galderisi M., Grobbee D.E., Jaarsma T., Kirchhof P., Kjeldsen S.E., Laurent S., Manolis A.J., Nilsson P.M., Ruilope L.M., Schmieder R.E., Sirnes P., Sleight P., Viigimaa M., Waeber B., Zannad F. 2013 ESH/ESC Guidelines for the management of arterial hypertension The Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J. Hypertens. 2013;31:1281-357.
  2. Диагностика и лечение артериальной гипертонии: клинические рекомендации. Кардиологический вестник. 2015; X(1):3-30.
  3. Sehestedt T., Jeppesen J., Hansen T.W., Wachtell K., Ibsen H., Torp-Pedersen C., Hildebrandt P., Olsen M.H. Risk prediction is improved by adding markers of subclinical organ damage to SCORE. Eur. Heart. J. 2010;31:883-91.
  4. Sehestedt T., Jeppesen J., Hansen T.W., Rasmussen S., Wachtell K., ibsen H., Torp-Pedersen C., Olsen M.H. Thresholds for pulse wave velocity, urine albumin creatinine ratio and left ventricular mass index using SCORE, Framingham and ESH/ESC risk charts. J. Hypertens. 2012;30:1928-36.
  5. Volpe M., Battistoni A., Tocci G., Agabiti Rosei E., Catapano A.L., Coppo R., del Prato S., Gentile S., Mannarino E., Novo S., Prisco D., Mancia G. Cardiovascular risk assessment beyond systemic coronary risk estimation: a role for organ damage markers. J. Hypertens. 2012;30:1056-64.
  6. Kannel W.B. Left ventricular hypertrophy as a risk factor in arterial hypertension. Eur. Heart. J. 1992;13(Suppl. D):82-8.
  7. Levy D., Salomon M., D'Agostino R.B., Belanger A.J., Kannel W.B. Prognostic implications of baseline electrocardiographic features and their serial changes in subjects with left ventricular hypertrophy. Circulation. 1994;90:1786-93.
  8. Cuspidi C., Ambrosioni E., Mancia G., Pessina A.C., Trimarco B., Zanchetti A. Role of echocardiography and carotid ultrasonography in stratifying risk in patients with essential hypertension: the Assessment of Prognostic Risk Observational Survey. J. Hypertens. 2002;20:1307-14.
  9. Lang R.M., Bierig M., Devereux R.B., Flachskampf F.A., Foster E., Pellikka P.A., Picard M.H., Roman M.J., Seward J., Shanewise J., Solomon S., Spencer K.T., Sutton M., Stewartet W. Recommendations for chamber quantification. Eur. J. Echocardiogr. 2006;7:79-108.
  10. Gonzalez A., Lopez B., Diez J. Fibrosis in hypertensive heart disease role of the angiotensin-aldosterone system. Med. Clin. N. Am. 2004;88:83-97.
  11. Ciulla M.M., Paliotti R., Hess D.B., Tjahja E., Campbell S.E., Magrini F., Weber K.T. Echocardiographic patterns of myocardial fibrosis in hypertensive patients: endomyocardial biopsy versus ultrasonic tissue characterization. J. Am. Soc. Echocardiogr. 1997;10:657-64.
  12. Weber K.T., Brilla C.G., Janicki J.S. Myocardial fibrosis: functional significance and regulatory factors. Cardiovasc. Res. 1993;27:341-48.
  13. Mizuguchi Y., Oishi Y., Miyoshi H., luchi A., Nagase N., Oki T. The functional role of longitudinal, circumferential, and radial myocardial deformation for regulating the early impairment of left ventricular contraction and relaxation in patients with cardiovascular risk factors: a study with two-dimensional strain imaging. J. Am. Soc. Echocardiogr. 2008;21:1138-44.
  14. Biering-Sørensen T., Biering-Sørensen S.R., Olsen F.J., Sengelov M., Jørgensen RG., Mogelvang R., Shah A.M., Jensen J.S. Global Longitudinal Strain by Echocardiography Predicts Long-Term Risk of Cardiovascular Morbidity and Mortality in a Low-Risk General Population: The Copenhagen City Heart Study. Circ Cardiovasc Imaging. 2017;10(3). pii: e005521. doi: 10.1161/CIRCIMAGING.116.005521.
  15. Ishizu T., Seo Y., Kameda Y., Kawamura R., Kimura T., Shimojo N., Xu D., Murakoshi N., Aonuma K. Left ventricular strain and transmural distribution of structural remodeling in hypertensive heart disease. Hypertension. 2014;63(3):500-6.
  16. Borlaug B.A., Redfield M.M., Melenovsky V., Kane G.C., Karon B.L., Jacobsen S.J., Rodeheffer R.J. Longitudinal changes in left ventricular stiffness: a community-based study. Circ. Heart. Fail. 2013;6:944 -52.
  17. Yoon J.H., Kim M.H., Chung H., Choi E.Y., Min P.K., Yoon Y.W., Lee B.K., Hong B.K., Rim S.J., Kwon H.M., Kim J.Y. Echo-Doppler-derived indexes of ventricular stiffness and ventriculo-arterial interaction as predictors of new-onset atrial fibrillation in patients with heart failure. Cardiovasc. Ultrasound. 2016;14:7.
  18. Abhayaratna W.P., Seward J.B., Appleton C.P., Douglas P.S., Oh J.K., Tajik A.J., Tsang T.S. Left atrial size: physiologic determinants and clinical applications. J. Am. Coll. Cardiol. 2006;47:2357-63.
  19. Алехин М.Н. Ультразвуковые методы оценки деформации миокарда и их клиническое значение. М., 2012. 88 с.
  20. Kurt M., Wang J., Torre-Amione G., Nagueh S.F. Left atrial function in diastolic heart failure. Circ. Cardiovasc. imaging. 2009;2:10-5.
  21. Cameli M., Lisi M., Focardi M., Reccia R., Natali B.M., Sparla S., Mondillo S. Left atrial deformation analysis by speckle tracking echocardiography for prediction of cardiovascular outcomes. Am. J. Cardiol. 2012;110(2):264-69.
  22. Kim D., Shim C.Y., Cho I.J., Kim Y.D., Nam H.S., Chang H.J., Hong G.R., Ha J.W., Heo J.H., Chung N. incremental Value of Left Atrial Global Longitudinal Strain for Prediction of Post Stroke Atrial Fibrillation in Patients with Acute ischemic Stroke. J. Cardiovasc. Ultrasound. 2016;24(1):20-7.
  23. Lang R.M., Badano L.P., Mor-Avi V., Afilalo J., Armstrong A., Ernande L., Flachskampf F.A., Foster E., Goldstein S.A., Kuznetsova T., Lancellotti P., Muraru D., Picard M.H., Rietzschel E.R., Rudski L., Spencer K.T., Tsang W., Voigt J.-U. GUIDELINES AND STANDARDS Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update from the American Society of Echocardiography and the European Association of Cardiovascular imaging. J. Am. Soc. Echocardiogr. 2015;28:1-39.
  24. Okin P.M., Devereux R.B., Jern S., Kjeldsen S.E., Julius S., Nieminen M.S., Snapinn S., Harris K.E., Aurup P., Edelman J.M., Wedel H., Lindholm L.H., Dahlöf B. for the LiFE Study investigators. Regression of electrocardiographic left ventricular hypertrophy during antihypertensive treatment and the prediction of major cardiovascular events. JAMA. 2004;292:2343-49.
  25. Devereux R.B., Wachtell K., Gerdts E., Boman K., Nieminen M.S., Papademetriou V., Rokkedal J., Harris K., Aurup P., Dahlöf B. Prognostic significance of left ventricular mass change during treatment of hypertension. JAMA. 2004;292:2350-56.
  26. Okin P.M., Devereux R.B., Jern S., Kjeldsen S.E., Julius S., Nieminen M.S., Snapinn S., Harris K.E., Aurup P., Edelman J.M., Dahlof B. Losartan intervention for Endpoint reduction in hypertension Study investigations. Regression of electrocardiographic left ventricular hypertrophy by losartan vs. atenolol: The Losartan intervention for Endpoint reduction in Hypertension (LiFE) Study. Circulation. 2003;108:684-90.
  27. Fagard R.H., Celis H., Thijs L., Wouters S. Regression of left ventricular mass by antihypertensive treatment: a meta-analysis of randomized comparative studies. Hypertension. 2009;54:1084-91.
  28. Hanson L. Left ventricuiar hypertrophy. High Blood Pressure. 1993;2(Suppl. 1):2-4.
  29. Brilla C.G., Funck R.C., Rupp H. Lisinopril-mediated regression of myocardial fibrosis in patients with hypertensive heart disease. Circulation. 2000;102:1388-93.
  30. Diez J., Laviades C., Mayor G., Gil M.J., Monreal I. Increased serum concentrations of procollagen peptides in essential hypertension: relation to cardiac alterations. Circulation. 1995;91:1450-56.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bionika Media, 2017

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies