Problems of pancreas transplantation and the role of bioengineered materials in long-term survival and functioning of islet cells

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Replacement of β-cells by donor pancreas (transplantation or cell therapy may be a solution to a number of problems associated with the treatment of patients with type 1 diabetes mellitus. The article discusses the problems of transplantation of the pancreas and islet cells, the role of the extracellular matrix in maintaining the functional activity and survival of β-cells of the islets of the pancreas. Data on possible sources of insulin-producing cells and the evolution of transplantation methods are presented. The article discusses the features of biomaterials for bioengineered scaffolds aimed at protecting the graft from the recipient’s immune reactions, facilitating the exchange of vital molecules, improving the viability and metabolic activity of islet cells. The analysis of the advantages and disadvantages of encapsulating devices of various sizes, possible solutions to the issue of graft vascularization, as well as the prospects for the use of 3D-bioprinting of the pancreas.

全文:

受限制的访问

作者简介

Svetlana Bulgakova

Samara State Medical University

编辑信件的主要联系方式.
Email: l.a.sharonova@samsmu.ru
ORCID iD: 0000-0003-0027-1786
俄罗斯联邦, Samara

Lyudmila Sharonova

Samara State Medical University

Email: l.a.sharonova@samsmu.ru
ORCID iD: 0000-0001-8827-4919

Cand. Sci. (Med.), Associate Professor at the Department of Endocrinology and Geriatrics, Samara State Medical University, Samara, Russia

俄罗斯联邦, Samara

Yuliya Dolgikh

Samara State Medical University

Email: l.a.sharonova@samsmu.ru
ORCID iD: 0000-0001-6678-6411
俄罗斯联邦, Samara

Olga Kosareva

Samara State Medical University

Email: l.a.sharonova@samsmu.ru
ORCID iD: 0000-0002-5754-1057
俄罗斯联邦, Samara

Ekaterina Treneva

Samara State Medical University

Email: l.a.sharonova@samsmu.ru
ORCID iD: 0000-0003-0097-7252
俄罗斯联邦, Samara

Dmitry Kurmaev

Samara State Medical University

Email: l.a.sharonova@samsmu.ru
ORCID iD: 0000-0003-4114-5233
俄罗斯联邦, Samara

参考

  1. Алгоритмы специализированной медицинской помощи больным сахарным диабетом. Под редакцией И.И. Дедова, М.В. Шестаковой, А.Ю. Майорова. 10-й выпуск. Сахарный диабет. 2021; 24(S1):1–148. [Clinical guidelines. Diabetes mellitus type 2 in adults. Ed. by Dedov I.I., Shestakova M.V., Mayorov A.Yu. 10th edition. Sakharnyi diabet=Diabetes mellitus. 2021;24(S1):1–148. (In Russ.)]. doi: 10.14341/DM12802.
  2. Lin Y.-J., Mi F.-L., Lin P.-Y., et al. Strategies for Improving Diabetic Therapy via Alternative Administration Routes that Involve Stimuli-Responsive Insulin-Delivering Systems. Adv Drug Deliv Rev. 2019;139:71–82. doi: 10.1016/j.addr.2018.12.001.
  3. Shrestha, P., Regmi, S., Jeong, J.-H. Injectable Hydrogels for Islet Transplantation: A Concise Review. J Pharm Investig. 2020;50(1):29–45. doi: 10.1007/s40005-019-00433-3.
  4. Gruessner A.C., Gruessner R.W. Long-term outcome after pancreas transplantation: a registry analysis. Curr Opin Organ Transplant. 2016;21:377–85. doi: 10.1097/MOT.0000000000000331.
  5. Niclauss N., Meier R., Bedat B., et al. Beta-Cell replacement: pancreas and islet cell transplantation. Endocr Dev. 2016;31:146–62. doi: 10.1159/000439412
  6. Shapiro A.M., Lakey J.R., Ryan E.A., et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med. 2000;343:230–38. doi: 10.1056/NEJM200007273430401.
  7. Gamble A., Pepper A.R., Bruni A., Shapiro A.M.J. The journey of islet cell transplantation and future development. Islets. 2018;10:80–94. doi: 10.1080/19382014.2018.1428511.
  8. Vantyghem M.C., de Koning E.J.P., Pattou F., Rickels M.R. Advances in β-cell replacement therapy for the treatment of type 1 diabetes. Lancet. 2019;394:1274–85. doi: 10.1016/S0140-6736(19)31334-0.
  9. Rodriguez-Diaz R., Caicedo A. Neural control of the endocrine pancreas. Best Pract Res Clin Endocrinol Metab. 2014;28(5):745–56. doi: 10.1016/j.beem.2014.05.002.
  10. Arrojo e Drigo R., Ali Y., Diez J., et al. New insights into the architecture of the islet of Langerhans: a focused cross-species assessment. Diabetologia. 2015;58:2218–28. doi: 10.1007/s00125-015-3699-0.
  11. Aamodt K.I., Powers A.C. Signals in the pancreatic islet microenvironment influence β-cell proliferation. Diabetes Obes Metab. 2017;19(Suppl 1):124–36. doi: 10.1111/dom.13031.
  12. Parnaud G., Lavallard V., Bedat B., et al. Cadherin Engagement Improves Insulin Secretion of Single Human β-Cells. Diabetes. 2015;64(3):887–896. doi: 10.2337/db14-0257.
  13. Баранов С.А., Нечаев В.М. Поджелудочная железа как единый функционально взаимосвязанный орган. Медицинский Совет. 2017;(11):148–51. [Baranov S.A., Nechaev V.M. Pancreas as a single functionally interrelated organ. Meditsinskiy sovet=Medical Council. 2017;(11):148–51. (In Russ.)] doi: 10.21518/2079-701X-2017-11-148-151.
  14. Narayanan S., Loganathan G., Dhanasekaran M., et al. Intra-islet endothelial cell and β-cell crosstalk: Implication for islet cell transplantation. World J Transplant. 2017;7(2):117–28. doi: 10.5500/wjt.v7.i2.117.
  15. Phelps E., Cianciaruso C., Santo-Domingo J., et al. Advances in pancreatic islet monolayer culture on glass surfaces enable super-resolution microscopy and insights into beta cell ciliogenesis and proliferation. Sci Rep. 2017;7:45961 doi: 10.1038/srep45961.
  16. Riopel M., Krishnamurthy M., Li J., et al. Conditional β1-integrin-deficient mice display impaired pancreatic β cell function. J Pathol. 2011;224(1):45–55. doi: 10.1002/path.2849.
  17. Wassmer C., Lebreton F., Bellofatto K., et al. Generation of insulin-secreting organoids: a step toward engineering and transplanting the bioartificial pancreas. Transpl Int. 2020;33:1577–88. doi: 10.1111/tri.13721.
  18. Lammert E., Thorn P. The Role of the Islet Niche on Beta Cell Structure and Function. J Mol Biol. 2020;432(5):1407–18. doi: 10.1016/j.jmb.2019.10.032.
  19. Patel S.N., Mathews C.E., Chandler R., Stabler C.L. The Foundation for Engineering a Pancreatic Islet Niche. Front Endocrinol (Lausanne). 2022;13:881525. doi: 10.3389/fendo.2022.881525.
  20. Muchkaeva I.A., Dashinimaev E.B., Artyuhov A.S., et al. Generation of iPS Cells from Human Hair Follice Dermal Papilla Cells. Acta Naturae. 2014;6(1):45–53.
  21. Okita K., Yamakawa T., Matsumura Y., et al. An efficient nonviral method to generate integration-free human-induced pluripotent stem cells from cord blood and peripheral blood cells. Stem Cells. 2013;31(3):458–66. doi: 10.1002/stem.1293.
  22. Xue Y., Cai X., Wang L., et al. Generating a non-integrating human induced pluripotent stem cell bank from urine-derived cells. PLoS One. 2013;8(8):e70573. doi: 10.1371/journal.pone.0070573.
  23. Ariyachet C., Tovaglieri A., Xiang G., et al. Reprogrammed stomach tissue as a renewable source of functional β cells for blood glucose regulation. Cell Stem Cell. 2016;18:410–21. doi: 10.1016/j.stem.2016.01.003.
  24. Lysy P.A., Weir G.C., Bonner-Weir S. Making β cells from adult cells within the pancreas. Curr Diab Rep. 2013;13:695–703. doi: 10.1007/s11892-013-0400-1.
  25. Itakura G., Kawabata S., Ando M., et al. Fail-Safe System against Potential Tumorigenicity after Transplantation of IPSC Derivatives. Stem Cell Rep. 2017;8:673–84. doi: 10.1016/j.stemcr.2017.02.003.
  26. Maoz B., Herland A., FitzGerald E., et al. A linked organ-on-chip model of the human neurovascular unit reveals the metabolic coupling of endothelial and neuronal cells. Nat Biotechnol. 2018;36:865–874. doi: 10.1038/nbt.4226.
  27. Murphy S., Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32:773–785. doi: 10.1038/nbt.2958.
  28. Chang T.M.S. Semipermeable Microcapsules. Science. 1964;146:524–25. doi: 10.1126/science.146.3643.524.
  29. Lim F., Sun AM. Microencapsulated islets as bioartificial endocrine pancreas. Science. 1980 Nov 21;210(4472):908–10. doi: 10.1126/science.6776628.
  30. Шуплецова В.В., Литвинова Л.С., Карпов А.А. и др. Инкапсуляция клеток и тканей поджелудочной железы: проблемы и пути их преодоления. Гены & Клетки. 2016;XI(1):18–23. [Shupletsova V.V., Litvinova L.S., Karpov A.A., et al. Encapsulation of cells and tissues of the pancreas: problems and ways of their overcoming. Genes&Cells. 2016;XI(1):18–23. (In Russ.)].
  31. Caserto J.S., Bowers D.T., Shariati K., Ma M. Biomaterial Applications in Islet Encapsulation and Transplantation. ACS Appl. Bio Mater. 2020;3(12):8127–35. doi: 10.1021/acsabm.0c01235.
  32. Cao, H., Duan, L., Zhang, Y. et al. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Sig Transduct Target Ther. 2021;6:426. doi: 10.1038/s41392-021-00830-x.
  33. Lin P Ma S, Wang X, Zhou F. Molecularly engineered dual-crosslinked hydrogel with ultrahigh mechanical strength, toughness, and good self-recovery. Adv Mater. 20155;27(12):2054–59. doi: 10.1002/adma.201405022.
  34. Wu F., Pang Y., Liu J. Swelling-strengthening hydrogels by embedding with deformable nanobarriers. Nat Commun. 2020;11(1):4502. doi: 10.1038/s41467-020-18308-9.
  35. Zamboni F., Collins M.N. Cell Based Therapeutics in Type 1 Diabetes Mellitus. Int J Pharmaceutics. 2017;521(1–2):346–356. doi: 10.1016/j.ijpharm.2017.02.063.
  36. Dalheim M. O., Vanacker J., Najmi M.A., et al. Efficient functionalization of alginate biomaterials. Biomaterials. 2016;80:146-156. doi: 10.1016/j.biomaterials.2015.11.043.
  37. Espona-Noguera A., Ciriza J., Canibano-Hernandez A., et al. Tunable injectable alginate-based hydrogel for cell therapy in Type 1 Diabetes Mellitus. Int J Biol Macromol. 2018;107(Pt A):1261–69. doi: 10.1016/j.ijbiomac.2017.09.103.
  38. Bai X., Pei Q., Pu C., et al. Multifunctional Islet Transplantation Hydrogel Encapsulating A20 High-Expressing Islets. Drug Des Devel Ther. 2020;14:4021–27. doi: 10.2147/DDDT.S273050.
  39. Knobeloch T., Abadi S.E.M., Bruns J., et al. Injectable Polyethylene Glycol Hydrogel for Islet Encapsulation: an in vitro and in vivo Characterization. Biomed Phys Eng Express. 2017;3:035022. doi: 10.1088/2057-1976/aa742b.
  40. Lin C.C., Raza A., Shih H. PEG hydrogels formed by thiol-ene photo-click chemistry and their effect on the formation and recovery of insulin-secreting cell spheroids. Biomaterials. 2011;32(36):9685–95. doi: 10.1016/j.biomaterials.2011.08.083.
  41. Кузнецова В.С., Васильев А.В., Григорьев Т.Е. и др. Перспективы использования гидрогелей в качестве основы для отверждаемых костно-пластических материалов. Стоматология. 2017;96(6):68–74. [Kuznetsova V.S., Vasilyev A.V., Grigoriev T.E., et al. The prospects of hydrogels usage as a basis for curable osteoplastic materials. Stomatologiya. 2017;96(6):68–74. (In Russ.)]. doi: 10.17116/stomat201796668-74.
  42. Hogrebe N.J., Reinhardt J.W., Gooch K.J. Biomaterial microarchitecture: a potent regulator of individual cell behavior and multicellular organization. J Biomed Mater Res A. 2017;105(2):640–61. doi: 10.1002/jbm.a.35914.
  43. Kratochvil M.J., Seymour A.J., Li T.L., et al. Engineered materials for organoid systems. Nat Rev Mater. 2019;4(9):60622. doi: 10.1038/s41578-019-0129-9.
  44. Wang J.K., Cheam N.M.J., Irvine S.A., et al. Interpenetrating Network of Alginate-Human Adipose Extracellular Matrix Hydrogel for Islet Cells Encapsulation. Macromol Rapid Commun. 2020;41(21):2000275–76. doi: 10.1002/marc.202000275.
  45. Bellofatto K., Moeckli B., Wassmer C.H., et al. Bioengineered Islet Cell Transplantation. Curr Transpl Rep. 2021;8:57–66. doi: 10.1007/s40472-021-00318-1.
  46. Primavera R., Kevadiya B.D., Swaminathan G., et al. Emerging Nano- and Micro-Technologies Used in the Treatment of Type-1 Diabetes. Nanomaterials (Basel). 2020;10(4):789. doi: 10.3390/nano10040789.
  47. Opara A., Jost A., Dagogo-Jack S., Opara E.C. Islet cell encapsulation–Application in diabetes treatment. Experimental Biology and Medicine. 2021;246(24):2570-2578. doi: 10.1177/15353702211040503.
  48. Daly A.C., Riley L., Segura T., Burdick J.A. Hydrogel Microparticles for Biomedical Applications. Nat Rev Mater. 2020;5(1):20–43. doi: 10.1038/s41578-019-0148-6.
  49. Hu S., Martinez-Garcia F.D., Moeun B.N., et al. An Immune Regulatory 3D-Printed Alginate-Pectin Construct for Immunoisolation of Insulin Producing β-cells. Mater Sci Eng. 2021;123:112009. doi: 10.1016/j.msec.2021.112009.
  50. Laporte C., Tubbs E., Pierron M., et al. Improved human islets’ viability and functionality with mesenchymal stem cells and arg-gly-asp tripeptides supplementation of alginate micro-encapsulated islets in vitro. Biochem Biophys Res Commun. 2020;528(4):650–57. doi: 10.1016/j.bbrc.2020.05.107.
  51. Kwiatkowski A.J., Stewart J.M., Cho J.J., et al. Nano and Microparticle Emerging Strategies for Treatment of Autoimmune Diseases: Multiple Sclerosis and Type 1 Diabetes. Adv Healthc Mater. 2020;9(11):2000164–11. doi: 10.1002/adhm.202000164.
  52. Youn W., Kim J.Y., Park J., et al. Single-Cell Nanoencapsulation: From Passive to Active Shells. Adv Mater. 2020;32(35):e1907001. doi: 10.1002/adma.201907001.
  53. Krol S., Baronti W., Marchetti P. Nanoencapsulated Human Pancreatic Islets for β-cell Replacement in Type 1 Diabetes. Nanomedicine. 2020;15(18):1735–38. doi: 10.2217/nnm-2020-0166.
  54. Toni T. De., Stock A.A., Devaux F., et al. Parallel evaluation of polyethylene glycol conformal coating and alginate microencapsulation as immunoisolation strategies for pancreatic islet transplantation. Front Bioeng Biotechnol. 2022;10:886483. doi: 10.1016/j.lpm.2022.104139.
  55. Syed F., Bugliani M., Novelli M., et al. Conformal Coating by Multilayer Nano-Encapsulation for the Protection of Human Pancreatic Islets: In-Vitro and In-Vivo Studies. Nanomedicine: Nanotechnol Biol Med. 2018;14(7):2191–203. doi: 10.1016/j.nano.2018.06.013.
  56. Desai T., Shea L.D. Advances in Islet Encapsulation Technologies. Nat Rev Drug Discov. 2017;16(5):338–50. doi: 10.1038/nrd.2016.232.
  57. Joao Paulo M. C. M., Leuckx G., Sterkendries P., et al. Human Multipotent Adult Progenitor Cells Enhance Islet Function and Revascularisation when Co-transplanted as a Composite Pellet in a Mouse Model of Diabetes. Diabetologia. 2016;60:134–12. doi: 10.1007/s00125-016-4120-3.
  58. Mohamed-ahmed S., Fristad I., Suliman S., et al. “Adipose-Derived and Bone Marrow Mesenchymal Stem Cells: A Donor-Matched Comparison”. Stem Cel Res Ther. 2018;9(1):168. doi: 10.1186/s13287-018-0914-1.
  59. Nour S., Imani R., Chaudhry G.R., Sharifi A.M. Skin Wound Healing Assisted by Angiogenic Targeted Tissue Engineering: A Comprehensive Review of Bioengineered Approaches. J Biomed Mater Res. 2020;109:453–478. doi: 10.1002/jbm.a.37105.
  60. Toftdal M.S., Taebnia N., Kadumudi F.B., et al. Oxygen Releasing Hydrogels for Beta Cell Assisted Therapy. Int J Pharm. 2021;602:120595. doi: 10.1016/j.ijpharm.2021.120595.
  61. Wang L.-H., Ernst A. U., Flanders J. A., et al. An Inverse-Breathing Encapsulation System for Cell Delivery. Sci Adv. 2021;7(20):eabd5835. doi: 10.1126/sciadv.abd5835.
  62. Ribeiro D., Kvist A.J., Wittung-Stafshede P., et al. 3D-Models of Insulin-Producing β-Cells: from Primary Islet Cells to Stem Cell-Derived Islets. Stem Cell Rev Rep. 2018;14(2):177–88. doi: 10.1007/s12015-017-9783-8.
  63. Klak M., Kowalska P., Dobrzanski T., et al. Bionic Organs: Shear Forces Reduce Pancreatic Islet and Mammalian Cell Viability during the Process of 3D Bioprinting. Micromachines (Basel). 2021;12(3):304. doi: 10.3390/mi12030304.
  64. Leberfinger A.N., Ravnic D.J., Dhawan A., Ozbolat I.T. Concise Review: Bioprinting of Stem Cells for Transplantable Tissue Fabrication. Stem Cells Transl Med. 2017;6(10):1940–48. doi: 10.1002/sctm.17-0148.
  65. Хесуани Ю.Дж., Сергеева Н.С., Миронов В.А. и др. Введение в 3D-биопринтинг: история формирования направления, принципы и этапы биопечати. Гены и клетки. 2018;13(3):38–45. [Khesuani Y.D., Sergeeva N.S., Mironov V.A., et al. Introduction to 3D-bioprinting: the history, principles and stages. Genes&Cells. 2018;13(3): 38–45. (In Russ.)]. doi: 10.23868/201811031.
  66. Melchels F.P., Feijen J., Grijpma D.W. A review on stereolithography and its applications in biomedical engineering. Biomaterials. 2010;31:6121–30. doi: 10.1016/j.biomaterials.2010.04.050.
  67. Lanza R.P., Chung H.Y., Yoo J.J., et al. Generation of histocompatible tissues using nuclear transplantation. Nat Biotechnol. 2002;20:689–96. doi: 10.1038/nbt703.
  68. Lebreton F., Bellofatto K., Wassmer C.H., et al. Shielding islets with human amniotic epithelial cells enhances islet engraftment and revascularization in a murine diabetes model. Am J Transplant. 2020;20(6):1551–61. doi: 10.1111/ajt.15812.
  69. Marchioli G., van Gurp L., van Krieken P.P., et al. Fabrication of three-dimensional bioplotted hydrogel scaffolds for islets of Langerhans transplantation. Biofabrication. 2015;7:025009. doi: 10.1088/1758-5090/7/2/025009.
  70. Duin S., Schutz K., Ahlfeld T., et al. 3D Bioprinting of functional islets of Langerhans in an alginate/methylcellulose hydrogel blend. Adv Health Mater. 2019;8:e1801631. doi: 10.1002/adhm.201801631.
  71. Farina M., Ballerini A., Fraga D.W., et al. 3D Printed vascularized device for subcutaneous transplantation of human islets. Biotechnol J. 2017;12. doi: 10.1002/biot.201700169.
  72. Liu X., Carter S.D., Renes M.J., et al. Development of a coaxial 3D printing platform for biofabrication of implantable islet-containing constructs. Adv Health Mater. 2019;8:e1801181. doi: 10.1002/adhm.201801181.
  73. Польские учёные напечатали первую в мире бионическую поджелудочную железу с сосудами / Хабр [в сети]. [Polish scientists printed the world’s first bionic pancreas with vessels / Sudo Null IT News [online].] Available in: https://habr.com/ru/post/445020/
  74. Academia and business to develop 3D printed pancreas for testing diabetes medication - Med-Tech Innovation. [online]. Available in: https://www.med-technews.com/news/latest-medtech-news/academia-and-business-to-develop-3d-printed-pancreas-for-tes/

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bionika Media, 2023
##common.cookie##