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ABSTRACT

INTRODUCTION. In the introduction to the article, a review of publications on cavitation, vibration and noise in centrifugal
pumps, including the issues of cavitation erosion of impellers, is carried out.

AIM. Comparison of cavitation properties of a centrifugal pump of a mobile pumping unit with and without a pre-engineered
screw by computational fluid dynamic (CFD) modeling.

MATERIALS AND METHODS. The calculation of the flow part of a pre-injected impeller stage is described and the CFD
model of its hydrodynamic simulation is described. In the CFD model, Navier-Stokes equations averaged over the Reynolds
number and the working fluid continuity equation were used. A two-phase fluid model was used to simulate cavitation.

RESULTS. The final results of the calculations carried out in the above models are presented. Calculations were obtained
for a pump with impeller with and without an upstream stage (screw). For the impeller without a screw, the cavitation margin
of 4.7 m was obtained, which is critical for such a pump. For a pump with an impeller with an upstream auger the cavitation
margin is 1,7 m, that is much better and allows to show efficiency of such solution.

CONCLUSION. The requirement of hydrodynamic modeling for selection of optimal flow part of centrifugal pump
to improve its cavitation characteristics is formulated.
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AHHOTALMA

Beepenue. Bo BBeeHWM K cTaTbe 06CyaaloTcA NybnmnKkaumm no TeMe KaBuUTaumm, BUbpaLMm 1 LWyMa B LIEHTPOBEKHBIX
Hacocax, BK/IYan BONpOCkl KaBUTALMOHHOW 3po3um paboumx Konec.

Llenb uccnepoBaHuA — cpaBHEHWE KaBMTALMOHHBIX CBOWCTB LIEHTPOOEKHOM0 Hacoca nepesiBUHHON HAcOCHOM ycTa-
HOBKM C NpeLBKIIIOYEHHBIM LUHEKOM W 6e3 Hero MeTofaMu rMapoaMHaMudeckoro mopenuposanma (CFD).

MeToabl uccnepoBaHuA. PaccMOTpeH pacyeT MpOTOYHOM YacTW NpedBKMIYEHHOM CTyneHW paboyero Koneca,
a Takke onvcaHa CFD-Mogenb ero rmgpoauHaMmudeckoro Mogenvposaiua. B CFD-Mogenu ucnonb3oBanuch ypaBHEHUA
HaBbe-CroKca, ocpeHeHHble No unchy PeliHonbaca, v ypaBHeHMe Hepa3pbIBHOCTY pabouen xugkoctu. [nA MogenvpoBa-
HWUA KaBMTaLMM NpUMeHANach Mofenb OBYXDA3HOM HUAKOCTH.

Pesynbtatbl. [lpeActaBneHbl UTOroBble pe3ynbTaThl pacyeToB, MPOBeLEHHbIE B YKa3aHHbIX Bbllle Mogensx. beiu
Mony4YeHbl pacyeTHble AaHHble 1A Hacoca € pabouvMM KoNnecoM C NpedBKIIOYEHHON CTYNEHbI0 (LUHEKOM) M 6e3 Hee.
[na paboyero Koneca 6e3 LHeKa NonyveH KaBUTALMOHHBLIN 3anac 4,7 M, 4TO ABNAETCA KPUTUYECKUM AN TaKOro Hacoca.
[ns Hacoca ¢ pabounM KonecoM C NpedBKAIOYEHHBIM LUHEKOM MOYYeH KaBUTaLMOHHbIM 3anac 1,7 M, 4TO 3HaYMUTENbHO
yyLe 1 No3BOAAET NPOLEMOHCTPUPOBATL IGPEKTUBHOCTL TaKOMO PELLIEHMA.

3aknioyenune. ChopmynmpoBaHbl TpeboBaHuUA 0 He06XOAUMOCTY FMOPOAMHAMMYECKOTO MOJENMPOBaHUA AnA nogbopa
ONTUMaJbHOM NPOTOYHOM YacTM LIEHTPOOEKHOr0 Hacoca, ANA YNYULLEHUS ero KaBUTaLMOHHBIX XapaKTEPUCTHK.

Knoyeseie ciosa: HacocHas ycmaHOBKA; KABUMAYUOHHbIE KAYeCmaa; KaBUMAUS; NPeABbIK/IYeHHbIL WHek; 2udpPoOUHaMUYecKoe
MOOe/IUPOBaHUe.
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INTRODUCTION

One of the main problems at operation of centrifugal
pumps [1-9], entailing reduction of parameters, occurrence
of noise and vibration, destruction of impellers is cavitation
[10-14]. It is a process of formation and subsequent
collapse of steam bubbles with simultaneous condensation
of steam in liquid flow and is accompanied by acoustic
noise and hydraulic shocks.

Proceeding from the above, when designing any pump,
it is necessary to consider the possibility of cavitation. There
are many options to combat the phenomenon of cavitation:
changing the meridional cross-section of the impeller,
increasing the diameter of the inlet to the impeller,
changing the position of the inlet edge of the blades,
the use of a pre-injected screw, etc.

The problem of cavitation is especially urgent for pumps
operating in a wide range of flow rates and with large shaft
speeds. To such pumps belongs the developed mobile
pump unit with a drive from the internal combustion engine
through the multiplier (pump shaft rotation frequency
up to 5000 rpm), pressure at the pump inlet of which
can vary within a wide range depending on the general
operating mode of the whole pipeline and the operating
modes of the previous units in the chain. For uninterrupted
operation of such unit, it is required to consider options
for increasing its cavitation qualities.

AIM OF THE STUDY

Comparison of the cavitation properties of a centrifugal
pump of a mobile pumping unit with and without a pre-
engineered screw by fluid dynamic simulation (CFD)
methods.

RESEARCH METHODS

In order to compare cavitation properties of mobile
pumping unit with and without auger with the use
of computational fluid dynamic (CFD) modeling, auger
was calculated. The screw is a pre-injected axial stage
in a centrifugal pump, designed to create a boost at the
inlet to the centrifugal impeller [15-22]. When designing the
axial stage, it was decided to develop a screw of constant
pitch, which simplifies the calculation process and the
manufacturing process, in this case, the angle of installation
of blades is constant along the length of the screw:

BZLZB]L'

Taking into account the angle of attack of the auger
blade, the calculated setting angle of the inlet edge turned
out:

Blc +Z‘lc :180'
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When designing and calculating the auger, the impeller
blade installation angles at the inlet were assumed to be
equal:

P =21°% P, =18% B, =16°.

Based on the calculation performed and geometrical
parameters obtained according to the method [22], a 3D
model of the screw stage was built (Fig. 1).

To verify the cavitation characteristics of the pump
[19-20], hydrodynamic modeling of two-phase fluid flow
in the flow area of the first pump stage with a pre-entry
screw was performed in the STARCCM+ software package
and cavitation characteristics of the impeller without and
with a pre-entry screw were built.

Calculation was carried out at nominal operating mode
(liquid flow rate 80 m3/h), to simulate the experiment,
pressure at the inlet to the flowing part of the impeller
decreased smoothly (in steps of 5-10 kPa) to the onset
of stalling mode (sharp decrease of head). The second
critical mode, due to labor intensity of its exact determination
by this method, was determined approximately
by the method described in the literature [22].

A two-phase fluid model was used to simulate
cavitation. The approach known as VOF (Volume of Fluid)
was used as a physical model.

When calculating by the VOF method, the multiphase
medium is represented as a single fluid medium whose
properties change proportionally in accordance with
the volume fraction of each of the phases present in it —
liquid and its vapor:

where ¥, is the volume of each of the phases, V is

the volume of the calculation cell.

Fig. 1. 3D model of the auger.
Puc. 1. 3D-mopensb LHeKa.
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The equation for the mass concentration of each
of the phases is as follows:
o(a.p,)
— 4V (a,pV)=0.
p (a,pV)

Liquid cavitation was modeled based on a simplified
Rayleigh-Plesset model. The simplification of the model
consists in the fact that this model does not take into
account the surface tension of the gas bubble and
the effect of liquid viscosity on its growth rate. The
cavitation bubble growth rate in the selected model is

calculated as
(d_R Jz 2 PP
dt 30 p )

where R — bubble radius, m; p,, — saturated vapor
pressure of liquid, Pa; p — surrounding liquid pressure,
Pa; p — liquid density, kg/m®.

In this case, the minimum cavitation bubble size and
the minimum gas concentration in any of the calculated
cells are strictly limited to sufficiently small, but
nevertheless non-zero, values.

Since the turbulence model from the RANS (Reynolds
averaged turbulence models based on Navier-Stokes
equations) was used to model the turbulent flow in this
paper, all calculated quantities are time-averaged.

In the case of the incompressible fluid model
(p =const) these equations can be written in the form:

« the continuity equation for a liquid medium:

— = =

aux +i+%:01
ox Oy Oz

where u; is the averaged value of the fluid velocity

in projection on the j-th axis (j =1,2,3);
« equation of change of momentum averaged over time:

o  —du |_ dp, @
p%”fgﬂ:_a_z*a[%‘”—p(%ﬂv

where u,, p — averaged velocity and averaged pressure;
~) ~ . . .
T =2us; — viscous stress tensor for incompressible

- 1| 6w Ou,
fluid: 5y =—| =L+ —L
2| ox; Ox

1

] — strain rate tensor;

p<ul.uj> — Reynolds stress.

The introduction of the Reynolds averaged Navier-
Stokes equation [21] makes the system of equations
unclosed, since it introduces the unknown Reynolds
stresses. In order to close this system in this problem,
the semiempirical k-w SST model of turbulence was used,
which introduces the necessary additional equations:
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« turbulence kinetic energy transfer equation

%+UA%:P,€—BI€0)+i (v+c5k1/T)-ﬁ ;
o ox, ox; ox;

« equation of the relative rate of dissipation of turbulence
energy

a_w_kU'a_(D:
ot " ox,

=0L-S2—B-m2+ai[(v+cmvT)-§—m}+ .
x

J

The pump flow was modeled on a volumetric grid
consisting of 2,335,845 cells. Multifaceted cells were
generated in the flow core and prismatic cells near the solid
walls, which allows to simulate the flow in the boundary layer
more accurately. The computational grid is shown in Fig. 2.

The time step was chosen based on the speed
of the impeller so that there would be at least 20 time
steps per blade step, but so that the machine time
for the calculation would not be too long for the calculation.
The time step was chosen to be 0.0001s. The number
of internal iterations for each time step was chosen to be
10, as the most optimal in terms of convergence and
computation time.

The main parameters of the computational grid:

e The base size is 3 mm;

« stretch of the prismatic layer — 1.3;

« the thickness of the prismatic layer is 33.3%
of the base size;

« the number of prismatic layers is 5.

Fig. 2. Calculation grid.
Puc. 2. PacyetHan ceTKa.
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RESULTS CONCLUSIONS

As a «starting point» of the calculation, two-phase As a result of calculation by hydrodynamic
calculation of the impeller without a screw stage was simulation methods of a screw stage installed
made, and the value of cavitation margin of 4.7 m was at the inlet of a high-speed multistage pump of a mobile
obtained, which is insufficient for operation of the pump  pumping unit, a significant reduction of the allowable
unit (taking into account resistance in the suction piping)  cavitation margin from 47 m to 1.7 m was
without additional boost at its inlet (Fig. 3, 4). obtained.

In order to check the quality of profiling, a wheel The study shows that the cavitation performance
with a screw stage was calculated (Fig. 5, 6, 7) and of such multistage pumps is often worse than
a significant reduction of cavitation margin (up to 1.7 m) required, indicating the need for a more detailed
was obtained, which indicates the high cavitation qualities  consideration of this issue on a case-by-case
of the developed pump. basis.

Gas volume fraction Gas volume fraction
60 01 02z 03 04 05 06 07 08 09 10 00 01 02 03 04 05 06 07 08 09 10
[ D B B D B
Fig. 3. Gas volume fraction. Distribution of the vapor phase  Fig. 4. Gas volume fraction. Distribution of the vapor phase
at an inlet pressure of 50 kPa. at an inlet pressure of 40 kPa.
Puc. 3. Pacnpenenexune naposoi ¢asbl npu aasnelnu Ha Bxoge  Puc. 4. Pacnpepenenve naposoii dasbl npy [aBneHumn Ha Bxofe
50 Kla. 40 Kla.

Gas volume fraction Gas volume fraction
00 01 02 03 04 05 06 07 08 09 1,0 o0 01 02 03 04 05 06 07 08 09 1,0

Fig. 5. Gas volume fraction. Distribution of the vapor phase  Fig. 6. Gas volume fraction. Distribution of the vapor phase
at an inlet pressure of 20 kPa. at an inlet pressure of 12 kPa.

Puc. 5. Pacnpefenenve napoBoi ¢asbl Npu AaBneHuu Ha Bxoge  Puc. 6. Pacnpepenexne napoBoi ¢pasbl Npu AaBieHWM Ha BXofe
20 KlMa. 12 KMa.
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Gas volume fraction
00 01 02 03 04 05 06 07 08 09 10

Fig. 7. Impeller with pre-engineered screw at atmospheric inlet
pressure 101 kPa.

Puc. 7. Pabouee Koneco ¢ NpeBKIIO4YEHHBIM LUIHEKOM MPU aTMOC-
¢epHom naBneHum Ha Bxoge 101 Klla.
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