ТРАНСПОРТНЫЕ СРЕДСТВА И ЭНЕРГЕТИЧЕСКИЕ УСТАНОВКИ

Исследование активной подвески автомобиля с магнитореологическим амортизатором

д.т.н. проф. Абакумов А.М., к.т.н. доц. Чеботков Э.Г., Рандин Д.Г. Самарский государственный технический университет 8(846)242-11-78, em@samgtu.ru

Аннотация. Представлены результаты исследования динамических характеристик колебательной системы, эквивалентной подвеске автомобиля с управляемым магнитореологическим амортизатором. Рассмотрена возможность повышения качества виброзащиты автомобиля за счет дискретного изменения параметров управляемого магнитореологического амортизатора. На основании полученных результатов предложен алгоритм дискретной перенастройки.

<u>Ключевые слова</u>: активная подвеска, магнитореологическая жидкость, управляемый амортизатор, частотные характеристики.

В условиях возрастающих требований к качеству виброзащиты транспортных средств и других объектов на их основе всё более широкое применение получают «активные» системы виброзащиты (ACB) [1]. В качестве исполнительных элементов в таких системах используются звенья с управляемой жесткостью [2] или элементы с управляемым коэффициентом вязкого трения, в частности управляемые магнитореологические амортизаторы (MA) [3, 4].

На рисунке 1, в качестве примера, представлена конструкция МА, разработанная фирмой Delphi [5].

В таком амортизаторе приложенное к штоку 8 усилие в режиме «сжатие» заставляет перемещаться поршень 6 с обмоткой 7 вдоль корпуса амортизатора 2 по направлению к нижнему креплению 1, что сопровождается одновременным перетеканием магнитореологической жидкости 5 через дроссельные каналы поршня 6 амортизатора из полости А в полость Б. Кавитация жидкости, возникающая при резких перемещениях поршня, устраняется поджатием жидкости через поршень 4 закаченным под давлением газом (поз. 3, рисунок 1). Регулирующее воздействие в виде напряжения, подаваемого через контакты 9 на обмотки катушки 7, изменяет степень вязкости магнитореологической жидкости и тем самым позволяет управлять силой сопротивления, создаваемой магнитореологическим амортизатором при движении.

При экспериментальном исследовании характеристик амортизатора на специализированном комплексе с помощью кривошипно-шатунного механизма создавалось перемещение подвижного штока амортизатора по гармоническому закону с различными частотами. Измерялись значения частоты ω , максимальной линейной скорости V подвижного штока и соответствующее усилие *F*, создаваемое амортизатором при различных значениях управляющего напряжения.

По результатам обработки экспериментальных данных установлено, что линеаризованное уравнение для усилия, создаваемого амортизатором, может быть представлено в виде $\Delta F = \beta_0 \Delta \mathbf{V} + \beta_u \Delta \mathbf{V} ,$

где: β₀ – коэффициент передачи амортизатора при токе управления, равном нулю,

β_и – коэффициент передачи по приращению тока управления.

Расчетная схема одномассовой колебательной системы виброзащиты с управляемым амортизатором представлена на рисунке 2.

Рисунок 2. Расчетная схема одномассовой системы виброзащиты

На рисунке 2 обозначено: виброзащищаемый объект массой *m*, упругий элемент жесткостью *C*, неуправляемый и управляемый элементы вязкого трения (амортизатор) с параметрами β_0 и β_u , соответственно; *Z* – перемещение виброзащищаемого объекта; *Z*₀ – кинематическое возмущение в виде перемещения основания.

Динамика рассматриваемой колебательной системы описывается дифференциальным уравнением:

$$m\frac{d^{2}Z}{dt^{2}} + (\beta_{0} + \beta_{u})\frac{d(Z - Z_{0})}{dt} + C(Z - Z_{0}) = 0.$$
(1)

Передаточная функция (ПФ), соответствующая дифференциальному уравнению (1), для выходной переменной – скорости перемещения защищаемого объекта ($v = \frac{dZ}{dt}$) – и входной переменной Z_0 имеет вид:

$$W_{\rm B}(p) = \frac{V(p)}{Z_0(p)} = \frac{p\left[\frac{\beta_0 + \beta_u}{C} p + 1\right]}{\left[\frac{m}{C} p^2 + \frac{\beta_0 + \beta_u}{C} p + 1\right]} = \frac{p\left[2\xi_1 T_1 p + 1\right]}{T_1^2 p^2 + 2\xi_1 T_1 p + 1} , \qquad (2)$$

где: *p* - оператор Лапласа, $T_1 = \sqrt{\frac{m}{C}}, \ 2\xi_1 T_1 = \frac{\beta_0 + \beta_u}{C}.$

ПФ для выходной переменной – ускорения защищаемого объекта ($\varepsilon = \frac{d^2 Z}{dt^2}$) – и входной переменной Z_0 имеет вид:

Разработанная с учетом ПФ (2) и (3) структурная схема (рисунок 3) позволяет исследовать динамические характеристики разомкнутой по регулируемой переменной (скорости или ускорению) системы и оценить возможность снижения вибрационного поля за счет дискретного изменения регулирующего воздействия на МД.

В результате моделирования получены графики переходного процесса в системе при единичном ступенчатом воздействии со стороны основания (кривая 2, рисунок 4 а, б) для выходной переменной в виде скорости защищаемого объекта (кривая 1, рисунок 4 а) и для выходной переменной в виде ускорения защищаемого объекта (кривая 1, рисунок 4 б).

Рисунок 4. Переходные характеристики системы

Переходные характеристики на рисунке 4 а, б получены для следующих численных значений параметров: m=400 кг, C=40 кН/м, $\beta_0=2,8$ кПа·с·м, $\beta_u=0$ кПа·с·м, что соответствует типичным значениям параметров для амортизационных систем транспортных средств [6].

В результате обработки рассматриваемых переходных характеристик при различных относительных значениях $\beta_u^* = \frac{\beta_u}{\beta_0}$ регулирующего воздействия на демпфер получены зависимости относительных максимальных значений скорости $V_{\text{max}}^* = \frac{V_{\text{max}T}}{V_{\text{max}0}}$ и ускорения $\varepsilon_{\text{max}}^* = \frac{\varepsilon_{\text{max}T}}{\varepsilon_{\text{max}0}}$ и ускорения $\varepsilon_{\text{max}0}^* = 0$) защищаемого объекта от параметра β_u^* , представленные на рисунке 5а и рисунке 56 соответственно.

Рисунок 5. Графики зависимости максимальной виброскорости и виброускорения от относительного параметра β^{*}_μ

Также исследованы зависимости виброскорости и виброускорения от параметра β_u^* в режиме стационарных гармонических колебаний СВ.

На рисунке 6а и рисунке 6б представлены соответственно графики амплитудной частотной характеристики (АЧХ) системы виброзащиты для скорости и ускорения защищаемого объекта: $A_1(\omega)$ и $A_2(\omega)$. Они получены для трех значений параметра β_u^* : кривая 1 соответствует значению $\beta_u^* = 0$; кривая $2 - \beta_u^* = 0.5$; кривая $3 - \beta_u^* = 1.1$.

Рисунок 6. АЧХ для скорости и ускорения защищаемого объекта

Дополнительно на рисунке 7а представлен график зависимости относительного максимального значения АЧХ виброскорости защищаемого объекта от параметра β_u^* :

$$A_{1m}^{*}(\omega) = \frac{A_{1mT}(\omega)}{A_{1m0}(\omega_{c})},$$
(4)

где: $A_{1mT}(\omega)$ – максимальное значение АЧХ виброскорости защищаемого объекта во всем частотном диапазоне, соответствующее текущему значению β_u^* ,

 $A_{1m0}(\omega_c)$ – значения АЧХ виброскорости защищаемого объекта при собственной частоте (ω_c) колебаний системы и $\beta_u^* = 0$.

На рисунке 76 показан график зависимости относительного максимального значения

АЧХ виброускорения защищаемого объекта от параметра
$$\beta_u^*$$
:

$$A_{2m}^*(\omega) = \frac{A_{2mT}(\omega)}{A_{2m0}(\omega_c)},$$

где: $A_{2mT}(\omega)$ – максимальное значение АЧХ виброускорения защищаемого объекта во всем частотном диапазоне, соответствующее текущему значению β_u^* ;

 $A_{2m0}(\omega)$ – значения АЧХ виброускорения защищаемого объекта при собственной частоте (ω_c) колебаний системы и $\beta_u^* = 0$. Как следует из анализа графика на рисунке 7а, функция $A_{1m}^*(\omega)$ достигает минимума при значениях $\beta_{\mu}^* = 0,7 \div 0,75$.

При таком значении β_u^* происходит снижение $A_{2m}^*(\omega)$ (рисунок 7б) с 1 до 0,75. АЧХ виброскорости, как следует из рисунка ба, при $\beta_u^* < 0,5 \div 0,7$ имеют экстремум, соответствующий собственной частоте колебаний системы, величина которого снижается при увеличении β_u^* . Наибольшее значение виброскорости при $\beta_u^* > 0,5 \div 0,7$ имеет место на зарезонансных частотах.

Наибольшее значение ускорения защищаемого объекта (рисунок 6б) при различных значениях параметра β_{μ}^{*} соответствует зарезонансным частотам.

Таким образом, с учетом зависимостей на рисунке 5 и рисунке 7 рекомендуется выбирать значения параметра β_{μ}^{*} в диапазоне от 0 до 0,75.

С учетом полученных выше зависимостей предложен алгоритм (рисунок 8) дискретной перенастройки значений коэффициента вязкого трения управляемого амортизатора с учетом характеристик возмущающего воздействия.

Рисунок 8. Алгоритм дискретной перенастройки значений коэффициента вязкого трения

Предложенный алгоритм работает следующим образом. Вначале задаются параметры системы виброзащиты: значение защищаемой массы тела *m*, жесткости упругого элемента *C*, значение гидравлического сопротивления β_0 . Затем определяются текущие значения параметров β_u , угловая частота возмущения ω , перемещение *Z* тела и основания *Z*₀, скорость *V* и ускорение ε защищаемого объекта. Далее сравниваются текущее значение ω и частота собственных колебаний системы ω_c и принимается решение об изменении β_u (уменьшить или увеличить) на дискретную величину $\Delta\beta_u$. После этого оценивается эффективность изменения β_u по сравнению значений $\varepsilon(t)$, *V*(*t*) в предыдущий и текущий моменты времени. Если значения β_u находятся в рекомендуемом диапазоне значений для соответствующей частоты, то алгоритм завершает цикл работы и переходит в начало.

Литература

1. Чегодаев Д.Е., Шатилов Ю.В. Управляемая виброизоляция (конструктивные варианты и эффективность). – Самара: Самарск. аэрокосм. ун-т, 1995. – 144 с.

Транспортные средства и энергетические установки

- 2. Abakumov A.M., Miatov G.N. Control algorithms for active vibration isolation systems subject to random disturbance // Journal of Sound and Vibration. 2006. № 289. Pp. 889 907.
- Prabakar R.S., Sujatha S. Narayanan Optimal semi-active preview control response of a half car vehicle model with magnetorheological damper // Journal of Sound and Vibration. 2009. № 326. 2009. – Pp. 400 – 420.
- Гордеев Б.А., Ерофеев В.И., Синёв А.В., Мугин О.О. Системы виброзащиты с использованием инерционности и диссипации реологических сред. М.: ФИЗМАТЛИТ, 2004. 176 с.
- 5. Delphi MagneRide //Сайт «MOTOR-TALK Europas größte Auto- und Motor-Community!». URL: http://www.motor-lk.de/forum/aktion/Attachment.html?attachmentId=359392.
- 6. Ротенберг Р.В. Подвеска автомобиля. М.: Машиностроение, 1972. 392 с.
- 7. Абакумов А.М., Мятов Г.Н., Широков С.В., Рандин Д.Г. Исследование динамических воздействий на блоки сложных изделий при морской транспортировке // Вестник МГТУ Станкин. 2012. № 4 (23). С. 56 59.

Компьютерное моделирование технологических процессов сборки и отработки электрооборудования наземных транспортных средств

Аббасов А.Э., к.т.н. Аббасов Э.М. Финансово-технологическая академия, Университет машиностроения 8 (909) 969-80-59, alexn1smo@mail.ru, 8 (903) 786-58-87, abbapost@rambler.ru

Аннотация. В статье рассмотрены подходы для отработки и сборки электрооборудования наземных транспортных средств; разработана методика визуализации исходных данных, результатов моделирования устройств и их последующего конвертирования в специализированный расчетный пакет для оптимизации параметров по заданному критерию, а также обнаружения технологических несоответствий на ранней стадии в процессе моделирования.

<u>Ключевые слова</u>: автомобильный транспорт, электропривод клапана рециркуляции, оптимизация параметров.

При проведении научно-исследовательских и проектно-конструкторских работ по созданию и модернизации электрооборудования автомобиля, а также разработке новых изделий и материалов для автомобилестроения на производстве и в профильных учебных заведениях большое значение имеют технологические процессы их отработки и сборки с помощью современных компьютерных технологий [1, 2]. Актуально сокращение процесса отработки и сборки оборудования с помощью компьютерных технологий визуализации, аддитивных технологий создания цифровой модели с помощью 3D-сканирования и макетирования с помощью 3D-печати [3], специализированных программных сред для расчета оптимальных по выбранному критерию параметров изделий [4, 5]. Проведенный анализ представленных вариантов технологического процесса отработки и сборки технических изделий показал, что качество процессов не соответствует показателям или по точности результата, или по трудоемкости и затратам материальных и энергетических ресурсов [6]. Необходимы этапы информационного и математического моделирования, позволяющие при минимальных затратах рассмотреть показатели и различные режимы работы, обеспечение оптимального сочетания высокой точности размеров проектируемого электрооборудования и минимальных затрат в процессе их сборки, обнаружение технологических несоответствий на ранней стадии в процессе моделирования.

Трехмерность дает возможность в некоторых случаях значительно сократить линейные размеры изделия, упростить его конструкцию и сборку. Возможен полный переход на новые стандарты конструкторской документации (КД) с использованием методов визуализации с применением стандартных 3D-образов [4]. В настоящее время на многих производственных предприятиях России КД ведется на основе методологии нисходящего проектирования с за-