Предельное формоизменение закрепленного по контуру круглого стального листа в двухоперационном процессе формовки с использованием сферических пуансонов малого радиуса

к.т.н. доц. Михайлова В.Л., д.т.н. проф. Сухомлинов Л.Г. Университет машиностроения 8(495)223-05-23,доб. 1318

Аннотация. Излагаются результаты применения осесимметричной жесткопластической безмоментной конечноэлементной модели к исследованию предельных параметров формоизменения закрепленного по контуру круглого стального листа в двухоперационном процессе формовки с использованием сферических пуансонов малого радиуса. Разрыв формуемой оболочки предсказывается расчетной моделью по моменту локализации деформации.

<u>Ключевые слова</u>: осесимметричная жесткопластическая безмоментная конечноэлементная модель, двухоперационная формовка сферическими пуансонами, локализация деформации

Процессы формовки закрепленных по контуру круглых заготовок из листовых металлов под действием жестких инструментов широко используют в практике для получения оболочек вращения различной конфигурации. В подобных процессах площадь поверхности формуемой оболочки существенно увеличивается по сравнению с тем, что имеет место в исходном плоском состоянии. Ограничивающим при этом фактором является разрыв формуемой оболочки, который в случае высокопластичных листовых металлов (таких, как низкоуглеродистые листовые стали) обычно происходит вследствие локализации деформации (шейкообразования). В качестве одного из способов решения задачи получения в указанном процессе оболочки с максимально возможным значением площади поверхности может рассматриваться вариант выполнения этого процесса в две операции. В настоящей статье такой двухоперационный процесс (с использованием сферических пуансонов малого по сравнению с заготовкой радиуса) исследуется расчетным путем с применением осесимметричной жесткопластической безмоментной конечноэлементной модели [1, 2].

Основные положения указанной вычислительной модели состоят в следующем. Исходим из предположения, что формуемая из листового металла под действием жесткого инструмента осесимметричная оболочка относится к классу тонких безмоментных оболочек. Задачу о нагружении такой оболочки рассматриваем в статической формулировке. Упругими деформациями на фоне больших пластических деформаций пренебрегаем, считая материал оболочки жесткопластическим. Используем предложенный Р. Хиллом [3] вариант теории течения (квадратичный критерий текучести) для трансверсально изотропного материала с изотропным упрочнением (в случае изотропного материала полагаем R = 1, где R – коэффициент нормальной анизотропии материала). Считаем, что взаимодействие оболочки с инструментом осуществляется в соответствии с кулоновским законом трения. Меридиан срединной поверхности рассматриваемой оболочки в ее исходном недеформированном состоянии разбиваем на такое количество N участков малых размеров, чтобы в течение всего процесса деформирования допустимо было бы пренебрегать их кривизной, считая эти участки прямолинейными. С выбором цилиндрической системы координат (x, r, ϕ) процесс формоизменения подобной безмоментной оболочечной модели, состоящей из указанных N элементарных оболочек с прямолинейными образующими, рассматриваем как пошаговый, при котором переход из известного состояния в момент времени t в новое состояние, относящееся к моменту времени $t + \Delta t$, осуществляется с малыми приращениями деформаций.

Решение сформулированной физически и геометрически нелинейной контактной зада-

чи для дискретной модели оболочки на шаге нагружения (на интервале времени Δt) сводится посредством итерационной процедуры к решению последовательности линейных задач. При этом линеаризация исходной нелинейной системы уравнений на шаге нагружения в рамках такой процедуры осуществляется с использованием методов Ньютона и переменных параметров. Итерационные уточнения выполняются до достижения заданной относительной точности (δ_{or}) по перемещениям. Решение соответствующей системы линейных алгебраических уравнений проводится по методу Гаусса. Завершая описание вычислительной модели, укажем на публикации [1, 2, 4 – 8], где представлены примеры, подтверждающие надежность получаемых с помощью нее результатов.

На рисунке 1 представлена схема формовки тонкого металлического листа сферическим пуансоном в одну операцию. Здесь: *а* – радиус пуансона, *b* – радиус закрепленного контура листовой заготовки, *U* – перемещение пуансона, *P* – сила, с которой пуансон давит на формуемую оболочку.

Отмечаем важную роль трения в зоне контакта оболочки с пуансоном [4]. Трение сдерживает развитие деформаций формуемой оболочки в этой зоне, в результате чего преимущественный рост деформаций реализуется в элементах оболочки, несколько удаленных от ее полюса. При некотором критическом значении перемещения пуансона U^* дальнейший рост деформации локализуется в одном из указанных элементов оболочки в то время, как в остальных элементах оболочки при этом достигает своего предела (а сила P достигает своего предельного значения P^*). Оболочка в этот момент претерпевает разрыв.

Рисунок 1. Схема формовки сферическим пуансоном

В статье [8] представлены результаты расчетных исследований по определению указанных критических значений для случая однооперационной формовки стального листа с использованием пуансона, радиус которого *a* существенно меньше радиуса листа *b*. Материал листа предполагался изотропным (R = 1). Диаграмма упрочнения этого материала задавалась зависимостью вида $\sigma = A\overline{\epsilon}^n$, где $A = 550 M\Pi a$, n = 0,19. Толщина листа и его радиус были заданы в виде: $h = 1 \ mm$, $b = 111,4 \ mm$. Коэффициент трения определен в виде $\mu = 0,2$. Рассматривались два варианта формовки: 1) пуансоном с радиусом $a = 25 \ mm$; 2) пуансоном с радиусом $a = 50 \ mm$.

Согласно расчету критическое значение перемещения пуансона в первом случае имеет вид $U^* = 42 \, \text{мм}$, во втором – $U^* = 60,5 \, \text{мм}$. При этом катастрофический рост деформаций в первом случае зафиксирован в элементе заготовки, отстоящем от ее центра на расстоянии $r = 10 \, \text{мм}$, во втором случае – в элементе на расстоянии $r = 23 \, \text{мм}$. Достоверность полученных расчетных результатов подтверждена сравнением с экспериментальными данными, представленными в работе [9].

Учитывая сказанное, будем рассматривать далее задачу об отыскании (в рамках тех же исходных данных) такого варианта формовки описанной листовой заготовки (но уже в две операции с использованием тех же пуансонов), который позволил бы получить оболочку (чашу) высотой, превышающей указанное значение 60,5 *мм*, не доводя оболочку до разрыва. Решение этой задачи с применением описанной вычислительной модели проводим следующим образом.

В качестве первой операции предполагаемого двухоперационного процесса формовки рассматриваем формовку исходной листовой заготовки под действием пуансона радиусом $a = 25 \, \text{мм}$. При численном моделировании в качестве параметра нагружения принимаем перемещение U пуансона, считая, что в начальный для каждой из рассматриваемых операций формовки момент времени пуансон приведен в контакт с заготовкой (или оболочкой), на которую в последующие моменты времени он начнет действовать. Такое перемещение применительно к первой и второй операции формовки будем обозначать как $U_{(1)}$ и $U_{(2)}$, соответственно.

Численное моделирование формоизменения оболочки в рамках указанной первой операции формовки осуществляем, доводя перемещение пуансона до некоторого значения $U_{(1)}$, меньшего предельно допустимого для этой операции значения $U^* = 42 \, mm$. Приняв полученную таким образом оболочку в качестве заготовки, а в качестве инструмента пуансон с радиусом $a = 50 \, mm$, осуществляем численное моделирование формоизменения исследуемой оболочки в рамках второй операции формовки. Расчет проводим до такого значения перемещения $U_{(2)}^*$ пуансона, при котором фиксируется потеря несущей способности формуемой оболочки вследствие локализации деформации. Варьируя значение перемещения пуансона $U_{(1)}$ в первой операции, ищем решение сформулированной задачи по оптимизации исследуемого процесса формовки.

Проведенными параметрическими исследованиями установлено, что отмеченному оптимальному варианту рассматриваемого процесса формовки соответствует выбор значения перемещения пуансона в первой операции в виде $U_{(1)} = 25 \, \text{мm}$. Соответствующие результаты расчетов для этого случая представлены на рисунках 2, 3 и 4. Отметим, что, как и в работе [8], расчеты проводились с выбором методических параметров дискретной модели в виде: N = 400, $\Delta U = 0.02 \, \text{мm}$ и $\delta_{\text{от}} = 0.001$, где ΔU – приращение перемещения пуансона на шаге нагружения.

Рисунок 2. Распределение деформаций вдоль оси r исходного листа на различных этапах формовки (случай $U_{(1)} = 25 \, \text{мm}$)

На рисунке 2 приведены графики распределения деформаций формуемой оболочки

вдоль радиальной оси *r* исходного листа на различных этапах формовки. Здесь $\overline{\varepsilon}_s$ и $\overline{\varepsilon}_{\phi}$ – логарифмические деформации оболочки в меридиональном и окружном направлениях. Цифрой 1 помечены результаты, относящиеся к первой операции формовки (при $U_{(1)} = 25 \text{ мм}$). Цифрами 2, 3, 4 помечены результаты, относящиеся ко второй операции формовки и соответствующие следующим значениям перемещения $U_{(2)}$ пуансона: 41,5 *мм*, 42 *мм*, 42,5 *мм*.

Как видно, в рассматриваемом случае при перемещении $U_{(2)}$ пуансона порядка 41,5 *мм* в картине распределения деформаций $\overline{\epsilon}_s$ имеют место два характерных всплеска примерно одинакового уровня. Они указывают на два опасных с точки зрения разрыва участка формуемой оболочки. Замечаем, что пиковые значения указанных деформаций имеют место в элементах заготовки, отстоящих от ее центра на расстояниях $r = 10 \, m$ и $r = 23 \, m$. Это уже упоминавшиеся выше места разрыва оболочки в случаях однооперационной формовки с использованием пуансонов с радиусами $a = 25 \, m$ и $a = 50 \, m$, соответственно. В рассматриваемом же случае двухоперационной формовки можно видеть, что при $U_{(2)} > 42 \, m$ рост деформаций прекращается всюду, кроме элемента с $r = 23 \, m$, где такой рост принимает катастрофический характер. На то, что перемещение пуансона $U_{(2)}^* = 42 \, m$ является для рассматриваемого случая критическим, указывает также и поведение кривой 1 на рисунке 3, которая представляет собой силовую характеристику второй операции обсуждаемого процесса формовки. Как видно, при $U_{(2)}^* = 42 \, m$ сила давления P на оболочку со стороны пуансона в указанной операции достигает своего предельного значения, и с этого момента формуемая оболочка теряет свою несущую способность.

Что касается среднего уровня деформаций, достигнутого в рассматриваемом двухоперационном процессе формовки при $U_{(2)}^* = 42 \text{ мм}$, то он заметно выше того, что имеет место в случае однооперационной формовки пуансоном с радиусом a = 50 мм при его перемещении $U^* = 60,5 \text{ мм}$ (см. [8]). Это указывает на то, что в данном случае высота окончательно отформованной оболочки и ее площадь поверхности должны превышать соответствующие результаты упомянутого однооперационного процесса. В подтверждение этого обратимся к рисунку 4, где представлены профили оболочек, отформованных в рассматриваемом двухоперационном процессе в рамках первой и второй операции. Как видно, высота окончательно отформованной оболочки здесь составляет величину 63,6 *мм*, что на 5% превышает соответ-

ствующую величину для случая однооперационного процесса. При этом аналогичное превышение по площади поверхности отформованной оболочки оценивается величиной порядка 11%.

Обратим внимание на то, что указанного эффекта по увеличению площади поверхности отформованной оболочки удалось добиться за счет предварительного растяжения центральной зоны оболочки в рамках первой операции формовки, при которой перемещение пуансона составило величину $U_{(1)} = 25 \text{ мм}$. Как показали расчеты, в случае превышения параметром $U_{(1)}$ отмеченного значения 25 *мм* упомянутый эффект становится менее заметным. В качестве примера на рисунках 5, 6 приведены соответствующие результаты, относящиеся к случаю, когда перемещение пуансона в первой операции формовки составило величину $U_{(1)} = 30 \text{ мм}$.

 $U_{(1)} = 30 \, \text{MM}$)

Рисунок 5. Распределение деформаций Вдоль радиальной оси *r* исходного листа на различных этапах формовки (случай ($U_{(1)} = 30 \, MM$)

Цифрой 1 на рисунке 5 помечены результаты, относящиеся к первой операции формовки (при $U_{(1)} = 30 \text{ мм}$). Цифрами 2, 3, 4 помечены результаты, относящиеся ко второй операции формовки и соответствующие следующим значениям перемещения $U_{(2)}$ пуансона: 35,5 мм, 36 мм, 36,5 мм. Как видно, в отличие от предыдущего случая (см. рисунок 2) в рассматриваемом случае преимущественный рост деформаций на завершающей стадии формовки имеет место в окрестности элемента оболочки с r = 10 мм. При $U_{(2)} > 36 \text{ мм}$ этот рост локализуется исключительно в указанном элементе и приобретает катастрофический характер, что в свою очередь проявляется в потере несущей способности формуемой оболочки при $U_{(2)}^* = 36 \text{ мм}$ (см. кривую 2 на рисунке 3).

Как видно из рисунка 6, окончательно отформованная в рассматриваемом случае оболочка (при $U_{(2)}^* = 36 \, \text{мm}$) имеет высоту 61,4 *мм*, что всего лишь на 1,5% превышает соответствующую величину для случая однооперационного процесса. При этом аналогичное превышение по площади поверхности отформованной оболочки оценивается величиной порядка 2,7%.

Завершая данную статью, отметим ее основные выводы.

1. С применением осесимметричной жесткопластической безмоментной конечноэлементной модели выполнено исследование предельных параметров формоизменения оболочки, формуемой из закрепленного по контуру круглого стального листа в двухоперационном Серия «Естественные науки»

процессе формовки с использованием сферических пуансонов малого радиуса.

 Расчетным путем установлен такой вариант проведения указанного двухоперационного процесса, который позволяет получить оболочку, площадь поверхности которой заметно (в данном случае на 11%) превышает соответствующую величину для случая однооперационного процесса формовки.

Литература

- 1. Сухомлинов Л.Г., Энгельсберг В.К. Конечноэлементная система автоматизированного расчета напряженно-деформированного состояния тонких оболочек в процессах осесимметричного формоизменения под действием жестких штампов // Известия вузов. Машиностроение. 1989. № 3. С. 66-71.
- Sukhomlinov L.G., Engelsberg V.K., Davydov V.N. A finite element membrane model for the analysis of axisymmetric sheet metal forming processes // Int. J. Mech. Sci. 1992. V. 34. № 3. P. 179-193.
- 3. Хилл Р. Математическая теория пластичности. М.: ГИТТЛ, 1956. 407 с.
- 4. Петров В.К., Михайлова В.Л., Сухомлинов Л.Г. Применение осесимметричной жесткопластической безмоментной конечноэлементной модели для определения коэффициентов трения в процессах формоизменения листовых металлов // Известия МГТУ "МАМИ". 2012. №2(14), т.2. С. 150-158.
- 5. Михайлова В.Л., Петров В.К., Сухомлинов Л.Г. Конечноэлементный анализ предельного формоизменения тонкого алюминиевого листа при осесимметричном гидровыпучивании в матрицу с плоским дном // Известия Тульского государственного университета. Естественные науки. 2013. Вып. 1. С. 99-110.
- 6. Михайлова В.Л., Петров В.К., Сухомлинов Л.Г. К оценке точности результатов численного моделирования в проблемах формовки оболочек из листовых металлов // Известия МГТУ "МАМИ". 2013. №2(16), т. 2. С. 154-158.
- 7. Сухомлинов Л.Г., Михайлова В.Л. Инкрементальная геометрически нелинейная осесимметричная конечноэлементная модель формоизменения толстых оболочек из листовых металлов под действием жестких инструментов // Известия МГТУ "МАМИ". 2013. №1(15), т. 3. С. 125-130.
- Михайлова В.Л., Сухомлинов Л.Г. Предельное формоизменение закрепленного по контуру круглового стального листа под действием сферического пуансона, радиус которого существенно меньше радиуса исходного листа // Известия МГТУ "МАМИ". 2014. №1(19), т. 4. С. 105-110.
- 9. Simonsen B.C., Lauridsen L.P. Energy absorption and ductile failure in metal sheets under lateral indentation by a sphere // Int. J. Impact Engng. 2000. V.24. P. 1017-1039.