значения гидравлического сопротивления в канале $\Delta P = 0.75 \cdot 10^5 \, \text{Па} \, (7500 \, \text{мм} \, \text{вод. ст.}).$

Выводы

Экспериментально подтверждено отсутствие уноса пены с воздушным потоком из насоса сепаратора ЦНС при расходе воздуха Q≤333 л/мин.

Уточнена зависимость коэффициента проскальзывания кольца жидкости относительно ротора насоса-сепаратора ЦНС от количества жидкости в роторе, а также определено, что в автомодельном режиме работы насоса-сепаратора коэффициент проскальзывания ϕ принимает постоянное значение, равное 0,85.

Установлено, что встроенный черпаковый насос создает напор жидкости до $0.75\cdot10^5$ Па. Насос-сепаратор ЦНС может обеспечить достаточное отведение жидкости (Q \geq 40 л/ч) при сопротивлении отводного канала не более $0.62\cdot10^5$ Па.

Центробежный насос-сепаратор ЦНС может быть использован для разделения газожидкостной смеси в условиях микрогравитации в составе системы регенерации загрязненной санитарно-гигиенической воды.

Литература

- 1. Бобе Л.С., Гаврилов Л.И., Кочктков А.А., Курмазенко Э.А., Андрейчук П.О. Зеленчуков А.А., Романов С.Ю., Синяк Ю.Е. Регенерация воды и атмосферы на космической станции: опыт орбитальных станций "Салют", "Мир" и МКС, перспективы развития // Сб. материалов междунар. науч. конф. IAC-10.A1.6.6., 27.10.2010 Москва, 2010.
- 2. Бобе Л.С., Самсонов Н.М., Новиков В.М., Кочетков А.А., Солоухин В.А. и др. Перспективы развития систем регенерации воды обитаемых космических станций // Известия Академии наук. Энергетика. 2009. №1 С. 69-77.
- 3. Среда обитания космонавта в пилотируемом космическом аппарате. Общие медикотехнические требования: ГОСТ Р 50804-95. Введ. 1995-08-08. Москва: Госстандарт России, 1995. 118 с.: ил.
- 4. Бобе Л.С. Технологические процессы систем регенерации воды: учеб. пособие М.: Издво МАИ, 1991.-68 с.
- 5. Риттенберг Б.Г., Филоненко В.Б., Барабаш П.А. О напоре безлопастных черпаковых насосов с частично заполненным корпусом // Насосы для интенсификации производственных процессов: Тем. сб. науч. тр. ВНИИГИДРОМАШ. М., 1988. с. 132-137.

Воздействие автотранспорта на распределение тяжелых металлов и бенз(α)пирена в водоемах рекреационных зон

Сорокин А.В., к.х.н. доц. Сотникова Е.В. Университет машиностроения 8 (495) 223-05-23, alex sorokin@list.ru

Аннотация. Проведен анализ загрязнения почв и донных отложений нескольких прудов, тяжелыми металлами и бенз(α)пиреном. Исследования химического состава выполнены методом масс-спектрометрии с индуктивно-связанной плазмой и высокоэффективной жидкостной хроматографией. Рассчитаны коэффициенты вариации, концентрации анализируемых компонентов в исследуемых средах. Выявлены компоненты с превышенными фоновыми значениями концентраций. Установлено влияние автотранспортных потоков на изменение фоновых концентраций тяжелых металлов в почве и донных отложениях водоемов рекреационных зон.

Ключевые слова: тяжелые металлы, почва, донные отложения, коэффициент вариации, бенз (α) пирен

Введение

Не подлежит сомнению тот факт, что растущее количество зарегистрированных автомобилей оказывает негативное влияние на биосферу. Особенно сильно данное воздействие ощущается в мегаполисах, состояние окружающей среды которых находится в упадочном состоянии. Несмотря на отказ от применения специализированных добавок в топливо для автомобилей, постоянно приходится сталкиваться с сообщениями о повышенном содержании стойких контаминатов окружающей среды, таких как: свинец, сурьма, селен, железо, бенз(α)пирен.

Бенз(α)пирен (БП) – является одним из наиболее опасных контаминантов окружающей среды и в результате выраженного канцерогенного, мутагенного, тератогенного действий отнесен к суперэкогенотоксикантам 1-го класса опасности, подлежит обязательному контролю в различных объектах окружающей среды. Образование БП в условиях мегаполиса является серьёзной проблемой из-за постоянного роста числа автомобилей. БП химически устойчив и в окружающей среде накапливается преимущественно в почве, донных отложениях.

Данные обстоятельства не могут не вызвать интереса к установлению влияния автотранспортных потоков на изменение фоновых значений для разных природных тел. При проведении данного исследования в качестве целевых компонентов были выбраны бенз(а)пирен и элементы, входящие в ГОСТ 17.4.1.02-83, как вещества с разной степенью опасности, кроме того, из-за возможного применения ферроцена как специализированной добавки в топливо для автомобилей, железо.

Объекты исследования

Объектами данного исследования были выбраны природные системы Герценского, Владимирского, Лебедянского и Верхнего Кузьминского прудов, расположенных в рекреационных зонах г. Москвы. Выбор оправдан расположением данных рекреационных зон относительно транспортных магистралей. Рекреационные зоны были условно разделены на две группы. Герценский и Владимирский пруды были отнесены к группе I, с повышенной нагрузкой от автотранспорта; Лебедянский и Верхний Кузьминский – к группе II, с умеренной нагрузкой от автотранспорта.

Герценский пруд на 570 м вытянут в западном и юго-западном направлениях, повторяя поворот р. Журавенки, на которой он создан. Ширина пруда около 50 м, площадь 3 га, длина береговой линии 1260 п. м. Является исключительно декоративным и напоминает большую реку. Берега естественные, местами крутые. Осуществлен сток в колодец, глубиной около 4 м и далее в подземный коллектор р. Журавенки. На востоке в пруд впадают Попов ручей и бывший сток с пруда Дунай, выходящие из подземных коллекторов близ самого берега [1].

Владимирский пруд является верховым озером в бассейне реки Нищенки. Площадь 2.3 га. Средняя глубина 2.5 м, объем воды в 22.5 тыс.куб.м. Почти на 400 м вытянут в северозападном направлении (по одноимённому ручью, в пойме которого создан). Ширина от 40 до 60 м. Берега с узкой бетонной набережной. Пруд окружён травяными откосами высотой от 1 до 3-4 м и асфальтированной дорожкой выше откосов [1].

Лебедянский пруд — один из прудов Измайловского каскада, известного с 17 века. Лебедянский расположен в восточной части бывшего Измайловского Зверинца (Измайловский парк) и занимает площадь более 16 га (включая каскад и плотину в западной части). Известно, что в 17 веке берега Лебедянского пруда были промышленными территориями.

Верхний Кузьминский пруд, расположен вблизи бывшего села и усадьбы Кузьминки (Влахернское) в природном и историческо-рекреационном комплексе «Кузьминки-Люблино», откуда и получил свое название. Второе название пруда — Мельничный [4]. Верхний Кузьминский — самый большой пруд в каскаде (площадь 14.5 га, средняя глубина 2.5 м, объем воды 360.0 тыс. куб.м). Дно пруда песчаное, пологое. Питание осуществляется за счёт грунтовых и поверхностных вод [5].

Кузьминский лесопарк находится в черте города Москвы и ограничен со всех сторон оживленными транспортными системами. Так, на севере, северо-востоке и востоке с ним граничат и оказывают антропогенную нагрузку Волгоградский проспект и Московская кольцевая автодорога, на юге и юго-востоке лесопарк граничит с улицами оживленного района Люблино: ул. Верхние поля, ул. Чагинская, ул. Ставропольская. На западе с Краснодонской и Люблинской улицами [7].

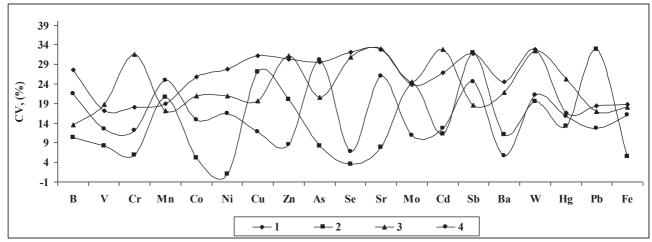


Рисунок 1. Коэффициенты вариации для исследуемых элементов в почве; 1 – Владимирский пруд; 2 – Герценский пруд; 3 – Верхний Кузьминский пруд; 4 – Лебедянский пруд

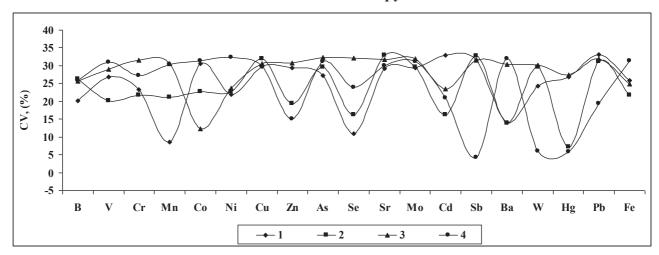


Рисунок 2. Коэффициенты вариации для исследуемых элементов в донных отложениях: 1 — Владимирский пруд; 2 — Герценский пруд; 3 — Верхний Кузьминский пруд; 4 — Лебедянский пруд

Отбор проб и проведение анализа

Для проведения исследований на содержание тяжелых металлов был осуществлен отбор проб почвы по ГОСТ 17.4.3.01-83 и ГОСТ 17.4.4.02-84, для чего береговую линию прудов равномерно разделили на пробные площадки по 0.5-1 га каждая, в зависимости от территориальных особенностей. За объединенную пробу почвы принимали две точечные, отобранные с каждой площадки, которые, в свою очередь, состояли из проб с глубиной отбора 0-5 см. и 5-20 см. Пробы донных отложений отбирали руководствуясь ГОСТ 17.1.5.01-80. Для проведения исследований на содержание бенз(α)пирена в пробах донных отложений и почвы отбор проб был произведен из Верхнего Кузьминского, Владимирского, Герценского прудов в соответствии с вышеуказанными нормативами.

Отобранные пробы были проанализированы методом масс-спектрометрии с индуктивно связанной плазмой согласно ПНДФ 16.1:2.3:3.11-98. Для определения валового содержания химических элементов, пробы почв и донных отложений подвергались полному разложению минеральными кислотами. При определении бенз(а)пирена отобранные пробы были проанализированы методом высокоэффективной жидкостной хроматографией (ВЭЖХ) с флуориметрическим детектированием согласно ПНДФ 16.1:2:2.2:3.39-03.

Результаты исследований

В результате полученных данных исследуемые элементы были расположены в порядке возрастания их концентрации в природных средах. Из чего было заключено, что в данных природных телах преобладают железо, стронций, свинец, марганец, барий, цинк и хром. Полученные данные так же позволили судить о сходстве в распределении исследуемых элементов в природных телах при их незначительной разнице в расположении в ряде сравнения.

Была произведена математическая обработка результатов, включившая в себя расчет коэффициентов вариации (не более 33%). В результате чего было установлено, что все исследуемые элементы укладываются в диапазон коэффициента вариации от 1 до 33.0% в почве и от 4.22 до 33.1 % в донных отложениях, см. рисунки 1, 2.

Расчет коэффициентов вариации для бенз(α)пирена в почве показал, что достигнутые значения во всех исследуемых рекреационных зонах находятся в диапазоне 20.69 – 27.82%, в донных отложениях – в диапазоне 11.58 – 33.13%.

Проведенные расчеты позволяют судить о достаточной однородности изучаемой совокупности и надежности средних значений, поэтому внутри каждой из исследуемых групп рекреационных зон провели объединение данных в рамках почвы и донных отложений, получив усредненные концентрации для каждого из исследуемых элементов, включая и БП.

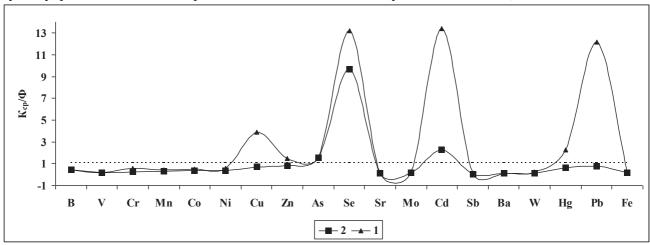


Рисунок 3. Сравнение усредненных концентраций исследуемых элементов в почве с фоновым значением; 1 — рекреационные зоны первой группы; 2 — рекреационные зоны второй группы

В ходе проведения дальнейшей математической обработки для расчета отношения полученных средних концентраций к фоновому значению в почве за фон принимали значения содержания валовых форм тяжелых металлов и мышьяка в почвах (ориентировочные значения для средней полосы России), для дерново-подзолистых суглинистых и глинистых почв [8]. Для элементов, не вошедших в СП 11-102-97 и не имеющих установленного фонового значения, использовали средние значения кларковых чисел, указанных Ведеполем, Виноградовым, Тэйлором [2], [3], [9], [10]. Выбор вышеописанных фоновых значений был обусловлен отсутствием каких либо данных по элементам, выходящим за рамки СП 11-102-97 для Московского региона. Имеющиеся данные сильно усреднены, а потому не могут быть использованы в качестве фоновых значений для рекреационных зон. При расчете содержания

исследуемых элементов в донных отложениях пользовались фоновыми значениями для почвы, а также значениями, указанными в [6] для «целевого уровня». Использование данных значений оправдано отсутствием ПДК тяжелых металлов в донных отложениях. В случае с БП пользовались значениями ПДК, указанными в СанПиН 42-128-4433-87.

В результате сравнения усредненных концентраций с фоновыми значениями было установлено, что содержание элементов первого и второго классов опасности в почве и донных отложениях превышает фоновые значения, либо находится близко к критической отметке, равной 1 $[K_{cp}/\Phi]$, см. рисунки3, 4.

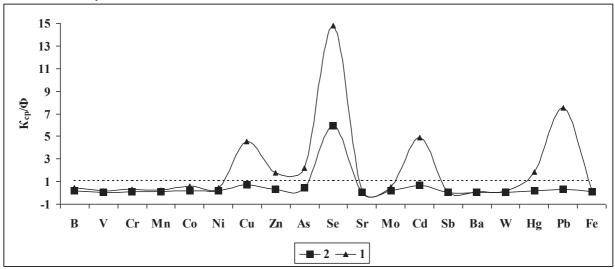


Рисунок 4. Сравнение концентраций исследуемых элементов в донных отложениях с фоновым значением; 1 — рекреационные зоны первой группы, значения по Cd сокращены в 10 раз; 2 — рекреационные зоны второй группы

Элементами с превышением фоновых значений в группе I являются следующие: Cu, Zn, As, Se, Cd, Pb, Hg. Элементами с превышением фоновых значений во II группе – Zn, As, Se, Cd, см. таблицу1.

Таблица 1 Элементы превышающие фоновые значения, Кср/Ф

Объект	Исследуемые элементы в почве								
	Cu	Zn	As	Se	Cd	Pb	Hg		
Группа І	3.92	2.49	1.61	13.24	13.39	12.14	2.23		
Группа II	0.68	1.40	1.55	9.68	2.24	0.75	0.61		
Объект	Исследуемые элементы в донных отложениях								
	Cu	Zn	As	Se	Cd	Pb	Hg		
Группа І	4.53	2.95	2.16	14.82	48.64	7.49	1.87		
Группа II	0.76	0.58	0.48	5.92	0.63	0.28	0.19		

Был рассчитан вклад автотранспортной составляющей в увеличение фоновых концентраций исследуемых элементов в рекреационных зонах I группы (1), а также вклад в полученные концентрации в пробах почвы и донных отложениях (2):

$$\frac{K_{cp}Me_{i}I_{ep} - K_{cp}Me_{i}II_{ep}}{K_{\phi}Me_{i}},$$
(1)

где $K_{cp}Me_iI_{cp}$ – усредненное содержание i-го элемента в исследуемой среде рекреационных зон I группы, мкг/кг.

 $K_{cp}Me_i II_{zp}$ – усредненное содержание і-го элемента в исследуемой среде рекреационных зон II группы, мкг/кг.

 $K_{th}Me_{i}$ – фоновое содержание i-го элемента в исследуемой среде, мкг/кг.

$$\frac{K_{cp}Me_{i}I_{zp} - K_{cp}Me_{i}II_{zp}}{K_{cp}Me_{i}I_{zp}} \times 100, \qquad (2)$$

где $K_{cp}Me_iI_{cp}$ — усредненное содержание і-го элемента в исследуемой среде рекреационных зон І группы, мкг/кг.

 $K_{cp}Me_i II_{zp}$ – усредненное содержание і-го элемента в исследуемой среде рекреационных зон II группы, мкг/кг.

Полученные по формулам (1) –(2) результаты представлены на рисунке 5 и в таблице 2.

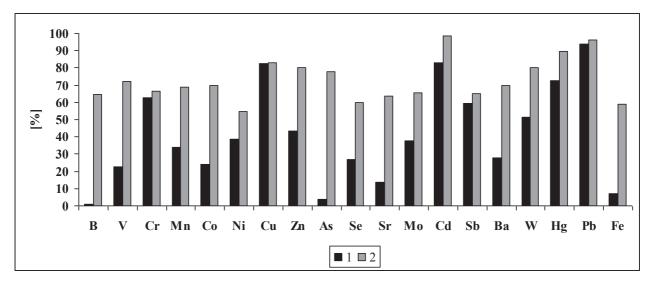


Рисунок 5. Вклад автотранспорта в полученные концентрации исследуемых металлов в пробах почвы и донных отложений рекреационных зон I группы: 1 — полученные значения для почвы; 2 — полученные значения для донных отложений

Таблица 2 Вклад автотранспортной составляющей в увеличение фоновых концентраций исследуемых элементов в рекреационных зонах I группы

Природное	Определяемые элементы										
тело	В	V	Cr	Mn	Со	Ni	Cu	Zn	As	Se	
Почва, [Ф. вел]	0.003	0.042	0.366	0.148	0.116	0.227	3.236	1.085	0.059	3.554	
	Sr	Мо	Cd	Sb	Ва	W	Hg	Pb	Fe	_	
	0.013	0.098	11.150	0.061	0.035	0.108	1.621	11.398	0.014	_	
Донные отложения, [Ф. вел]	В	٧	Cr	Mn	Со	Ni	Cu	Zn	As	Se	
	0.29	0.14	0.23	0.17	0.39	0.26	3.77	2.36	1.68	8.90	
	Sr	Мо	Cd	Sb	Ва	W	Hg	Pb	Fe		
	0.05	0.32	48.01	0.09	0.07	0.14	1.67	7.21	0.12		

В результате сравнения средних концентраций БП со значением ПДК (0.02 мг/кг) в пробах рекреационных зон I и II групп было установлено превышение его допустимой концентрации в первом случае, см. рисунок 6.

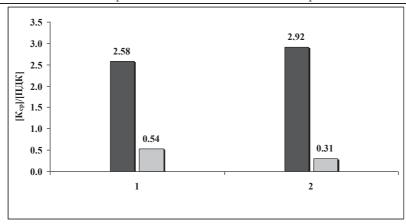


Рисунок 6. Отношение полученных средних концентраций БП к ПДК для почвы и донных отложений: 1 – полученные значения для почвы первой и второй группы; 2 – полученные значения для донных отложений первой и второй группы

Таким образом, концентрация БП в почве и донных отложениях рекреационных зон I группы превышает ПДК в 2.58 и 2.92 раза соответственно.

Выводы

Целью данной работы являлось установление влияния автотранспортных потоков на изменение фоновых концентраций элементов, входящих в ГОСТ 17.4.1.02-83, железа и БП. В результате проведенной работы было отобрано и проанализировано 82 пробы донных отложений и почвы. На этапе первичной обработки данных рассчитанные коэффициенты вариации позволили устранить имеющиеся явные промахи по W; Zn; Cd; Pb, а расположение элементов по возрастанию их концентрации в донных отложениях и почве позволило судить о некотором сходстве между рекреационными зонами в каждой из групп, что в последствии привело к их усреднению. Зарегистрированы превышения фоновых концентраций исследуемых элементов во всех группах рекреационных зон, как для почв, так и для донных отложений. Однако в группе І превышения в несколько раз выше, с максимумом, приходящимся на Se, Cd, Pb для всех сред. Влияние повышенной нагрузки от автотранспортной составляющей на І группу подтверждается также превышением ПДК БП как маркерного загрязнителя, в 2.58 и 2.92 раза в почве и донных отложениях соответственно. Был рассчитан вклад автотранспортной составляющей в изменение фоновых уровней исследуемых компонентов, см. таблицу 2. Распределение тяжелых металлов в почвах и донных отложениях было достаточно неравномерным, с максимумами, приходящимися на зоны, граничащие или находящиеся в непосредственной близости с транспортными магистралями. Так, на территориях Герценского пруда максимумы приходились на южную и юго-восточную часть береговой линии, однако имело место и повышение значений концентраций в северной части. Для более глубокой оценки распределения тяжелых металлов необходимо проводить дополнительные исследования с опробованием больших территорий, учитывая такие факторы, как роза ветров, количество осадков и рельеф местности, пропускная способность магистралей. В результате проведенной работы можно констатировать несомненное влияние транспортных потоков на фоновые значения тяжелых металлов и БП в виде их повышения на территориях рекреационных зон мегаполиса.

Литература

- 1. Агеева Р.А., Александров Ю.Н., Бондарук Г.П. и др. Улицы Москвы. Старые и новые названия.: -М.: издательский центр «Наука, техника, образование», 2003. 336 с.
- 2. Виноградов А.П. Закономерности распределения химических элементов в земной коре: Геохимия. 1956, № 1. С.6 52.

- 3. Виноградов А.П. Средние содержания химических элементов в главных типах изверженных горных пород земной коры: Геохимия. 1962, № 7. С.555 571.
- 4. Коробко М.Ю. Москва усадебная. Путеводитель. -М.: 2005. Новый московский путеводитель. С.175 208.
- 5. Коробко М.Ю. Московский Версаль: Кузьминки-Люблино.:-М.: 2001. 469 с.
- 6. "Нормы и критерии оценки загрязненности донных отложений в водных объектах Санкт-Петербурга" (утверждены главным государственным санитарным врачом по санктпетербургу 17.06.1996 и комитетом по охране окружающей среды и природных ресурсов Санкт-Петербурга и Ленинградской области 22.07.1996)
- 7. Порецкий H. A. Село Влахернское. M., 1913 репринт. M., 2000. C.5 9.
- 8. СП 11-102-97 Свод правил "Инженерно-экологические изыскания для строительства".- М., 2008.
- 9. Taylor, S.R. Abundance of chemical elements in the continental crust; a new table // Geochimica et Cosmochimica Acta 28(8). P.414-422.
- 10. Wedepohl K. H. Geochemie.: 1967 Sammiung Göschen. 220 p.

Энергоэффективность переработки полимерных отходов в водород и другую ликвидную продукцию

д.т.н. проф. Латышенко К.П.¹, к.т.н. Гарелина С.А.²

¹Университет машиностроения kplat@mail.ru

²Академия гражданской защиты МЧС РФ roul@ mail.ru

Аннотация. Предложено получать водород из полимерных отходов и найдены условия, обеспечивающие эффективное проведение процесса.

<u>Ключевые слова</u>: плазмохимический реактор, производство водорода из полимерных отходов, плазмохимическая переработка полимерных отходов, плазмохимическая технология, эффективность производства водорода из полимерных отходов

Введение

Очевидно, что экономия энергии благоприятно сказывается на состоянии природной среды. По расчётам специалистов энергосбережение оказывается в 4-5 раз экономически более выгодным, чем выработка эквивалентного количества энергии [4]. Энергоэффективность подразумевает не только уменьшение лишних трат энергии, но и повышение КПД использования энергии во всех энергетических процессах. Таким образом, перспективность той или иной технологии оценивают прежде всего по таким критериям, как экологичность и рациональность использования энергии [5].

Энергоэффективность получения водорода из полимерных отходов

В таблице 1 приведены результаты расчёта эффективности использования электроэнергии при производстве водорода δ из перерабатываемых полимеров:

$$\delta = W_{\rm H}/Q_{\rm DR},\tag{1}$$

где $W_{\rm H}$ — энергия, которая выделяется при сжигании полученного водорода (энергия, выделяющаяся при сжигании одного килограмма водорода, равна 39,48 кВт \cdot ч, данные по количеству водорода, выделяющегося при переработке полимеров, приведены в [3]);

 $Q_{\text{эл}}$ — затраты электроэнергии, необходимой для полной диссоциации молекул перерабатываемых веществ, в предположении того, что на разрыв химических связей тратится около 30 % электроэнергии, вводимой в разряд [3].