- 3. Еремеев Н.В. О регулируемых и регулирующих механизмах // Вестник МГУ, №4. М.: МГУ, 1975. 183 с.
- 4. Боннел Р.Д., Кофер Ж.А. Кинематический синтез регулируемого четырёхзвенного механизма // Прикладная механика, №1. М.: Мир, 1966.
- 5. Макговерн Д.Ф., Сандор Д.Н. Кинематический синтез регулируемых механизмов // Конструирование и технология машиностроения, №2. Труды американского общества инженеров-механиков, 1973.- 88 с.
- 6. Иванов В.А., Чупин Ю.Н. К вопросу внутрициклового регулирования кинематических параметров механических приводов каретки диагонально-резательных машин шинного производства // Химическое машиностроение, выпуск VI. М.: МИХМ, 1976. 160 с.

Метод испытаний пластмасс на выносливость

К.т.н. доц. Щербаков Ю.М., к.т.н. доц. Фролов В.Н. Университет машиностроения 8(499)267-16-73

Аннотация. Предложен метод испытаний пластмасс на выносливость при плоском поперечном изгибе в режиме заданной циклической деформации. Получены соотношения для расчёта величин прогибов, углов поворота концевых участков образца и технологического зазора δ между штифтами в подвижных опорах и образцом при поперечном изгибе образца, свойства которого заданы линейно-упругой и нелинейно-упругой (по степеннму закону) моделями. Для определения зависимости напряжений от числа циклов до разрушения образца предложен метод оценки напряжений с использованием зависимости деформаций от числа циклов до разрушения и зависимости напряжений от деформаций, полученных при квазистатических испытаниях в режиме "мгновенного" нагружения.

Ключевые слова: метод испытаний, поперечный изгиб, выносливость пластмасс.

Основные методы испытаний пластмасс на выносливость при изгибе

Для изучения выносливости материала обычно проводятся испытания образцов в циклическом режиме нагружения до их разрушения. В результате испытаний определяется предел выносливости [1]. Существует три основных режима испытаний на выносливость: при заданной нагрузке (напряжении), при заданной деформации и при заданной энергии деформации [2].

В настоящее время наиболее широко применяемыми методами определения предела выносливости являются следующие:

- испытания вращающегося образца круглого поперечного сечения в условиях чистого изгиба [3];
- испытание на поперечный изгиб консольно-закрепленного вращающегося образца под действием веса груза, приложенного к краю консоли [4];
- испытания на плоский поперечный изгиб консольно-закрепленного образца в режиме заданной деформации, где используются образцы с плавным переходом сечения от рабочей зоны к зоне закрепления.

По результатам испытаний строится кривая Велера в координатах N_p и σ_{\max} , где N_p – число циклов до разрушения образца, σ_{\max} – максимальное нагрузочное напряжение в образце.

В работе [5] приведена схема натурных испытаний металлических заклепочных соединений на выносливость в условиях поперечного изгиба. Образец (заклепочное соединение) закреплялся по центру на столе электромеханического возбудителя колебаний, так что центральная часть образца получала вибрационное воздействие, а сам образец за счет инерционных сил находился в условиях колебательного движения при поперечном изгибе. Эта схема

наиболее близка по характеру деформационного воздействия предлагаемому ниже методу испытаний, но имеет существенные отличия:

- поперечный изгиб возникает под действием инерционных сил;
- виброперемещения контролировались бесконтактным датчиком;
- для измерения действующих изгибных напряжений на образец наклеивались тензорезисторные преобразователи;
- область максимальных напряжений в образце находилась в вибрационном движении,
 что затрудняло визуальный контроль момента появления трещины.

Однако испытательное оборудование на многократный изгиб, широко используемое для металлов, для пластмасс используется редко [6].

Описание предлагаемого метода испытаний пластмасс на выносливость

Схема испытания образца показана на рисунке 1.

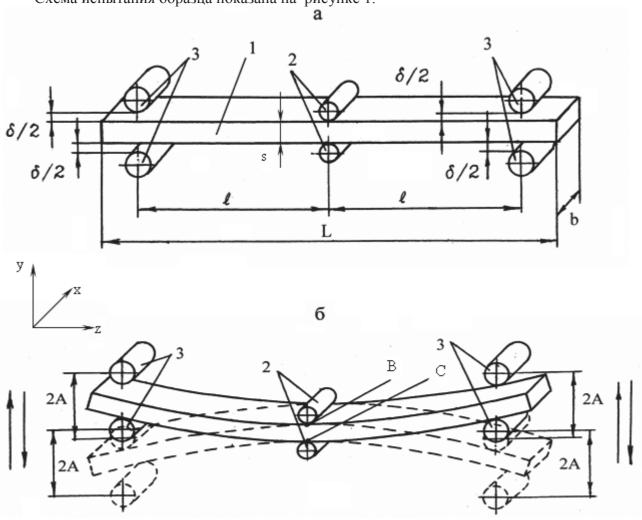


Рисунок 1. Схема нагружения образца: а — исходное положение образца; б — максимльный прогиб образца; 1 — образец; 2 — неподвижная пара штифтов; 3 — подвижная пара штифтов (болтов)

Исходное положение образца показано на рисунке 1а. Образец 1 помещается между тремя парами штифтов: средняя пара — неподвижная (образец между штифтами 2 располагается без натяга, зазор не должен превышать 0,05 мм), остальные две пары штифтов 3 могут совершать синхронно циклические колебания с амплитудой А в поперечном направлении к продольной оси образца, толкая концы образца вверх-вниз (см. рисунок 1б). Штифты 3 показаны сплошной линией в верхнем положении, штриховой — в нижнем положении.

Между штифтами каждой подвижной пары и образцом имеется задаваемый технологический зазор б, необходимый для свободного поворота концов образца при изгибе. Зазор устраняет зажим концевых зон образца, т.е. исключает появление продольных сил и обеспечивает выполнение условий прямого поперечного изгиба. По заданным амплитуде А и зазору δ вычисляется максимальный прогиб v_{max} , через который определяется максимальная деформация ε_{\max} . Таким образом, экспериментальная кривая выносливости $\varepsilon_{\max} = f_1 (\lg N_p)$ в режиме деформации строится в координатах ε_{\max} и $\lg N_p$. Для получения кривой выносливости в координатах σ_{\max} и $\lg N_p$ в настоящей работе предлагается использовать зависимость $\sigma_{\max} = f_2(\varepsilon_{\max})$, для выявления которой проводятся тарировочные испытания образцов. Для определения экспериментальной зависимости между σ_{\max} и ε_{\max} используют режим "мгновенного нагружения" в условиях поперечного изгиба. Для этого образец быстро, но без удара нагружают поперечной силой разной величины с замером возникающих при этом прогибов, причём время нагружения не должно превышать 1 секунды. Прогиб измеряют индикатором часового типа с ценой деления не более 0,01 мм. По результатам этих экспериментов могут быть рассчитаны параметры (константы) упругих моделей материала. Для всех рассматриваемых значений деформаций $\varepsilon_{ ext{max}}$ определяются значения напряжений $\sigma_{ ext{max}}$, из предположения справедливости закона Гука или степенного закона.

Расчёт деформаций и напряжений в образце при поперечном изгибе на основе линейного и степенного законов деформаций

На рисунке 1 показана расчётная схема испытаний на выносливость. Максимальный прогиб образца v_{\max} определяется соотношением:

$$v_{\text{max}} = A - \frac{\delta}{2} \,. \tag{1}$$

Предполагается, что связь напряжений и деформаций описывается степенным законом

$$\sigma_z = c\varepsilon_z^n, \tag{2}$$

где c и n — константы, определяемые экспериментально.

При малых перемещениях в условиях прямого поперечного изгиба балки из материала, подчиняющегося степенному закону, максимальные значения напряжений и деформаций могут быть рассчитаны по следующим формулам:

$$\sigma_{\text{max}} = \frac{(n+2)P\ell}{hs^2} \,, \tag{3}$$

$$\varepsilon_{\text{max}} = v_{\text{max}} \cdot \frac{(2n+1)s}{2n\ell^2} \,, \tag{4}$$

где ℓ , b, s – размеры образца (рисунок 1a).

В случае, если материал образца подчиняется линейному закону (Гука), формулы (3) и (4) соответственно преобразуются в (5) и (6):

$$\sigma_{\text{max}} = \frac{3P\ell}{bs^2},\tag{5}$$

$$\varepsilon_{\text{max}} = v_{\text{max}} \cdot \frac{3s}{2\ell^2} \,. \tag{6}$$

Определение напряженно-деформированного состояния (НДС) в "опасных" точках образца

При циклическом нагружении образца в условиях поперечного изгиба "опасное сечение" располагается между неподвижными штифтами посредине образца, а экстремальные

значения напряжений достигаются в точках B и C, расположенных на поверхности образца (см. рисунок 1). Попеременно в точке C возникает напряжение растяжения σ_z (причем $\sigma_x = \sigma_y = 0$), затем – сжатия; в точке B – сжимающее напряжение σ_z от изгиба и сжимающее напряжение σ_y от контакта с неподвижным штифтом, ($\sigma_x = 0$), затем растягивающее напряжение σ_z (при этом $\sigma_x = \sigma_y = 0$). Необходимо выяснить, какое НДС определяет накопление повреждаемости материала при циклических деформациях. В качестве критерия выбора НДС повреждаемости материала образца принято максимальное касательное напряжение τ_{max} . На рисунке 2 показаны круги Мора для НДС в точках C и B (рисунок 1б) поверхности образца. Круг напряжений для точки C — на рисунке 2а, а для точки B — на рисунке 2б, причём значения τ_{max} на той и другой круговой диаграмме одинаковые. Отсюда следует, что экстремальные сжимающие и растягивающие напряжения σ_z являются определяющими при условии, что справедливо неравенство $|\sigma_z| > |\sigma_y|$.

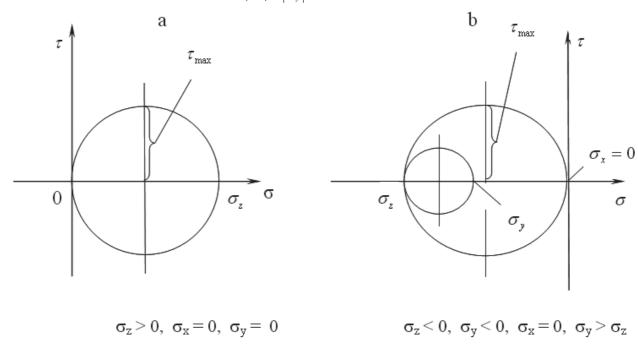


Рисунок 2. Иллюстрация к выбору предельного НДС, вызывающего накопление повреждаемости материала

Для выявления влияния контактного напряжения σ_y на величину τ_{max} был выполнен оценочный эксперимент на пластометре типа Тоуоѕеікі (Япония). На рисунке 3 представлена схема устройства по определению контактных напряжений при изгибе. Образец 2 располагался горизонтально на опорах 1 на рабочем столе пластометра. На верхней поверхности образца размещалась подложка 7 из тонкой плотной бумаги, поверх которой на образце располагался кондуктор 3, имеющий карман (окно прямоугольного сечения с вертикальными стенками, продольная ось которого была перпендикулярна продольной оси образца). Для размещения на образце кондуктор имел паз, размер которого соответствовал ширине образца. Перед испытанием на штифт 4 наносился тонкий слой красителя и, после частичной подсушки, штифт 4 помещался в карман кондуктора 3 (зазор между вертикальной стенкой кармана и штифтом составлял не более 0,05 мм). Через рычажную систему пластометра подвижный шток 5 и нагрузочный диск 6 усилие передавал на штифт 4, и образец прогибался

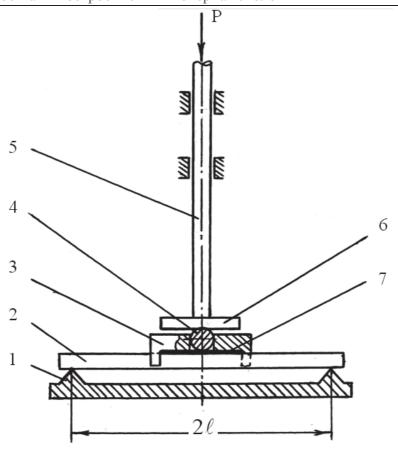


Рисунок 3. Схема устройства по определению контактных напряжений при изгибе

Размеры образцов и условия испытаний для оценочного эксперимента выбирались следующие: L=80 мм, $2~\ell=50$ мм, b=10 мм, s=4 мм , T=22 °C.

Нагрузка P = 30 Н. Прогиб образца под штифтом $v_{max} = 0,557$ мм.

Результаты оценочного эксперимента:

Размер "пятна контакта": 10 x 0,5 мм, площадь контакта 5 мм².

Максимальные напряжения растяжения-сжатия $\sigma_z = \pm 14,1 \text{ M}\Pi a$.

Максимальные контактные напряжения сжатия $|\sigma_y|$ = 6,0 MПа.

Вывод: величина σ_z более чем в 2 раза превышает σ_y , следовательно, для расчёта величины выбранного критерия τ_{max} учёта контактных напряжений σ_y от штифтов 2 (рисунки 1 и 2) не требуется.

Расчёт технологического зазора

Для минимизации погрешности определения выносливочти пластмасс по предлагаемому методу необходимо поддерживать величину технологического зазора в некоторой области значений $0 \le [\delta] \le \delta^*$, где $[\delta]$ – допустимая величина зазора; δ^* – максимальное предельное допустимое значение зазора. Для расчёта технологического зазора необходимо предварительно рассчитать углы поворотов концевых участков образца (рисунок 4). Рассчитаем, например, угол α поворота левого концевого участка образца относительно его нейтрального положения (рисунок 4а). Можно показать, что угол α определяется соотношением

$$\alpha = \frac{3v_{\text{max}}}{2\ell} \,. \tag{7}$$

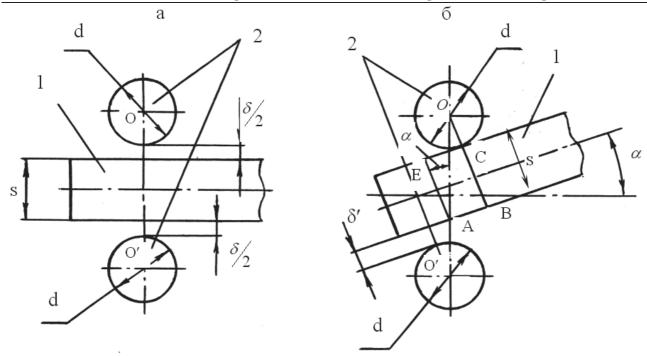


Рисунок 4. Схема расчёта технологического зазора δ

Рассчитаем минимальное значение величины зазора δ , при котором не происходит зажим концевых участков образца. Расчётная схема представлена на рисунке 4. Из рисунка 4а видно, что

$$OO' = d + s + \delta. (8)$$

Из рисунка 4б получаем

$$OO' = OD + DA + AO' = \frac{1}{\cos \alpha} \cdot (OC + AE + FO'), \qquad (9)$$

где $FO' = \frac{d}{2} + \delta'$.

В предельном случае при $\delta' = 0$ уравнение (9) можно записать в виде

$$OO' = \frac{1}{\cos \alpha} \cdot (d+s) \,. \tag{10}$$

Из уравнений (8) и (10) находим δ

$$\delta = (d+s) \cdot \left(\frac{1}{\cos \alpha} - 1\right). \tag{11}$$

Таким образом, используя уравнения (7) и (11), можно для каждого значения прогиба v_{\max} рассчитать величину технологического зазора δ , при котором с одной стороны, не про- исходит зажима концевых участков образца, с другой — величина зазора δ' при рассматриваемом значении v_{\max} равна 0. Учитывая возможные погрешности при установке технологического зазора, его номинальное значение должно быть увеличено на величину δ^* , которая подбирается опытным путём и должна быть достаточно малой.

Выводы

1. Предложен метод испытаний на выносливость, согласно которому строится экспериментальная кривая выносливости $\varepsilon_{\max} = f_1(N_p)$ в режиме задаваемых деформаций, затем при квазистатическом "мгновенном нагружении" определяется зависимость $\sigma_{\max} = f_2(\varepsilon_{\max})$,

с помощью которой строится кривая выносливости $\sigma_{\max} = f_3(\lg N_p)$.

- 2. На оборудовании для испытаний на выносливость образцов при поперечном изгибе должна быть предусмотрена возможность регулировки и контроля величины технологического зазора δ , исключающего зажим концевых участков образца. При этом для повышения точности, следует брать минимальное значение зазора δ , предварительно вычисленное по формуле (11).
- 3. Технологические возможности оборудования, используемого для реализации предложенного метода испытаний на выносливость, можно расширить, уменьшив расстояние 2ℓ между двумя парами подвижных штифтов для образцов из гибких материалов или, наоборот, увеличив расстояние 2ℓ для образцов из материалов с пониженной гибкостью.

Литература

- 1. ГОСТ 25-502-79 Расчеты и испытания на прочность в машиностроении. Методы испытаний на усталость. М.: Изд-во стандартов, 1979.
- 2. ГОСТ 26365-84 Резина. Общие требования к методам усталостных испытаний. М.: Изд-во стандартов, 1984.
- 3. Шах В. Справочное руководство по испытаниям пластмасс и анализу причин их разрушения. СПб.: Изд-во НОТ, 2009, 727с.
- 4. Школьник Л.М. Методика усталостных испытаний. Справочник. М.: Металлургия, 1978, 302с.
- 5. Испытательная техника. Справочник /ред. Клюев В.В., ч. 1. М.: Машиностроение, 1982, 528 с.
- 6. Нарисава И. Прочность полимерных материалов. М.: Химия, 1987, 398 с.

Подготовка отходов многослойной пищевой упаковки к переработке во вторичные материалы

К.т.н. проф. Н.Е. Николайкина, О.Ю. Маюсан, Н.А. Сальников Университет машиностроения, Тел. 8499-267-07-04, nikols 153@mail.ru

Аннотация. Рассмотрены вопросы переработки многослойной пищевой упаковки, приведены результаты исследований реагентного разделения слоев отходов пищевой упаковки с использованием слабой азотной кислоты для их последующей переработки.

<u>Ключевые слова:</u> многослойная упаковка, разделение, азотная кислота, технологические режимы.

В России, как в большинстве стран Западной Европы и мира в целом, для хранения жидких продуктов питания длительное время используют многослойную упаковку, в том числе фирмы Тетра Пак. Такую упаковку изготавливают путем последовательного соединения шести различных слоев из полиэтилена, картона, алюминиевой фольги, причем на 75% упаковка состоит из картона, на 20% из полиэтилена и 5% от общего объема составляет алюминиевая фольга. Для прочного скрепления слоев разнородных материалов между собой при изготовлении упаковки применяют метод горячего прессования. В настоящее время в России примерно 40% всех образующихся твердых бытовых отходов составляет упаковка, в том числе и многослойная. Отсутствие системы раздельного сбора отходов приводит к тому, что пока основная часть отходов упаковки поступает на полигоны для захоронения или на мусоросжигательные заводы. Перерабатывается в России только 15 тысяч тонн