ного продукта.

- 4. Верификация расчетных моделей показала, что доводку внешних форм автомобиля и оптимизацию внутренних потоков можно выполнять на компьютерных моделях.
- 5. В этом случае при оптимизации формы кабины нет необходимости в изготовлении масштабной модели автомобиля для установки ее в рабочей части аэродинамической трубы или полнокомплектного опытного образца автомобиля при проведении испытаний в дорожных условиях.

Литература

- 1. Бирман. Течения вблизи плохообтекаемых тел, применимые к аэродинамике автомашин // Труды общества инженеров-механиков США. Теоретические основы инженерных расчетов. – 1980. т. 102. № 3 – С. 85–96.
- 2. Евграфов А.Н., Высоцкий М.С., Титович А.И. Аэродинамика магистральных автопоездов. – Мн.: Наука и техника, 1988. – 232 с.
- 3. Евграфов А.Н., Высоцкий М.С. Аэродинамика колесного транспорта. Мн.: НИРУП Белавтотракторостроение, 2001. 368 с.
- 4. Петрушов В.А. Автомобили и автопоезда: Новые технологии исследования сопротивлений качения и воздуха. М.: ТОРУС ПРЕСС, 2008. 352 с.: ил.
- 5. Петрушов В.А. Оценка аэродинамических качестви сопротивлений качению автомобиля в дорожных условиях // Автомобильная промышленность. – 1985. № 11. – С. 14-20.
- 6. Кюхеман Д. Аэродинамическое проектирование самолетов / Пер. с англ. Н.А. Благовещенский, Г.И. Майкапар; Под ред. Г.И. Майкапара. – М.: Машиностроение, 1983. – 656 с.
- 7. Аэродинамика автомобиля / Под ред. В.Г. Гухо; пер. с нем. М.: Машиностроение, 1987. 424 с.
- 8. Аэродинамика автомобиля: сб. статей / Пер. с англ. М.: Машиностроение, 1984. 376 с.
- TamasLojos. Drag reduction by the production of a separation bubble on the front of a bluff body // Journal of Wind Engineering and Industrial Aerodynamics. - Vol. 22 - 1986. - P. 331-338.
- 10. Ватолин А.К. Пути снижения лобового сопротивления большегрузных автомобилей на основе исследований моделей в аэродинамических трубах: Дис ... канд. техн. наук: Казань, 1983. 178 с.

Исследование процесса теплоотдачи в сетчатой матрице роторного теплообменника

Алексеев Р., к.т.н. доц. Костюков А.В., Косач Л.А. Университет машиностроения 8(495) 223-05-23 доб. 1054 kostukov123@yandex.ru

Аннотация. Приводятся результаты экспериментальных и численных исследований тепловых процессов в сетчатой матрице роторного каркасного теплообменника. Получено близкое совпадение расчетных и экспериментально определенных значений степени регенерации и гидравлического сопротивления роторного теплообменника с сетчатой матрицей.

<u>Ключевые слова:</u> компактные теплообменники, моделирование теплогидравлических процессов, теплоотдача пористых матриц.

Одним из путей повышения эффективности применяемых в настоящее время в распределенной энергетике микротурбин является установка в них теплообменников со сверхвысокой степенью регенерации (95-97%). По этому направлению идет американская компания Wilson, разрабатывающая микротурбину мощностью 300 кВт с электрическим КПД 50% [1]. Получение степени регенерации на уровне 95-97% при приемлемых габаритах возможно в компактных роторных теплообменниках. В таких теплообменниках, как правило, используется сверхкомпактная пористая теплопередающая матрица. В частности в роторном теплоСерия. «Транспортные средства и энергетические установки»

обменнике отечественной микротурбины мощностью 270 кВт применяется пористая матрица, образованная намоткой металлических сеток [2]. Имеющаяся информация по теплопередаче в таких сетках весьма невелика. Исследования теплогидравлических характеристик проводились в очень узком диапазоне температур матрицы и теплоносителей (в экспериментах сетчатая матрица обдувалась попеременно воздухом с температурами 50° С и 30° С, соответственно, в этом же диапазоне менялась температура сетчатой матрицы) и в полученной эмпирической зависимости отсутствуют элементы, учитывающие температуру сетчатой матрицы [3]. Следствием этого явилось значительное, на 3-4% (абсолютных), несовпадение экспериментально полученной на режиме с температурой матрицы, лежащей в диапазоне 230- 600° С, и расчетной степени регенерации теплообменника [2, 4].

Для нахождения уточненной зависимости было выполнено математическое моделирование теплогидравлических процессов в сетчатой матрице, в результате которого были получены зависимости фактора Колборна (связанного с коэффициентом теплоотдачи матрицы) от параметров потока теплоносителя в виде [5, 6]:

$$J_k^{\text{Harp}} = (0.036Te_{\text{Harp}} + 0.074) \cdot \text{Re}_X^{0.0063 \text{ I}\!\!/ e_{\text{Harp}} - 0.514},$$
$$J_k^{\text{OXII}} = (0.027Te_{\text{OXII}} + 0.091) \cdot \text{Re}_X^{-(0.143Te_{\text{OXII}} + 0.32)}.$$

Целью данной работы является экспериментальная проверка этих зависимостей. Для выполнения поставленной задачи был разработан и смонтирован экспериментальный стенд (рисунок 1).

Рисунок 1. Стенд для определения теплогидравлических характеристик роторного теплообменника

Объектом исследования служила сетчатая теплопередающая матрица (рисунок 2), применяемая в роторных каркасных теплообменниках транспортных микротурбин [2]. Основные геометрические параметры сетчатой матрицы приведены на рисунке 2.

Слои сетки укладывались в цилиндрические ячейки диска роторного теплообменника (12 ячеек). Толщина сетчатой матрицы в каждой ячейке составляла 9 мм. Диск теплообмен-

ника приводился в движение электродвигателем. Подвод тепла к воздуху перед теплообменником производился двумя электрическими нагревателями, установленными в верхней части стенда. Измерения температур воздуха производились в патрубках на входе и выходе диска теплообменника с помощью десяти тарированных хромель-копелевых и хромельалюмелевых термопар, а также платы сбора и преобразования данных «National Instruments» с погрешностью в рассматриваемом температурном диапазоне около 2 ⁰C.

Диаметр проволоки $d_{np} = 0.13$ мм "Ячейка в свету" S = 0.2 мм Пористость P = 0.69 Компактность K = 9508 м²/м³ Гидравлический диаметр $d_r = 0.291$ мм

Рисунок 2. Фрагмент сетки матрицы

Помимо температур на стенде проводились измерения перепадов давления воздуха на диске теплообменника (пьезометрами) и расход проходящего через теплообменник воздуха (с помощью диафрагмы).

По полученным значениям температуры рассчитывались значения степени регенерации

$$\sigma = \frac{\left(T_{\Gamma_{\text{EX}}} - T_{\Gamma_{\text{Bbix}}}\right)}{\left(T_{\Gamma_{\text{EX}}} - T_{\text{BO3}_{\text{EX}}}\right)},$$

где: *Т*_{г_{вх} – осреднённая температура газа* на входе;}

*Т*_{Гвых} - осреднённая температура газа* на выходе;

*Т*_{возех} - осреднённая температура воздуха на входе;

* воздух, прошедший через электронагреватель, позиционируется как газ.

Расход воздуха рассчитывался по зависимости:

$$G = F * \alpha * \sqrt{2 * \rho * \Delta P},$$

где: F – площадь проходного сечения, α – коэффициент расхода, ρ – плотность вещества, ΔP – значение перепада давления на диафрагме.

Испытания проводились при различных расходах воздуха через теплообменник. Частота вращения ротора теплообменника на всех режимах была равной 17,5 об/мин. Полученные экспериментальные данные приведены в таблице 1.

Таблица 1.

Параметры теплоносителя в теплообменном аппарате на выбранных режимах

	Расход	Параметры і	газа		Параметры воздуха			
тепло-		Давление	Перепад	Темпера-	Темпера-	Перепад давле-	Давление	Темпера-
	носите-	на входе,	давления на	тура на	тура на	ния на выходе,	на выходе,	тура на
	ля, кг/с	Па	входе, Па	входе, К	выходе, К	Па	Па	входе, К
Реж 1	0.0052	106056	981	633.4	360.5	814	100858	294.65
Реж 2	0.00431	104095	775	652	367.77	608	100172	297.4
Реж 3	0.00334	102869	588	651.6	372.83	471	99681	300.85

Для апробации полученных уточненных зависимостей фактора Колборна [5, 6] был выполнен теплогидравлический расчет испытуемого роторного теплообменника. Математическое моделирование базировалось на решении системы уравнений, включающей уравнения Навье-Стокса, энергии, неразрывности и состояния. Сетчатый теплопередающий элемент теплообменного устройства математически описывался как пористое тело. Теплогидравлические процессы в сетчатой матрице теплообменника описывались зависимостями для фактора Колборна, а также зависимостями линейного и квадратичного коэффициентов сопротивления [5, 6].

Расчетная модель задачи показана на рисунке 3. В нее вошли сектор диска с ячейкой, заполненной сетчатой матрицей, секторы верхней и нижней крышек теплообменника, а так-

Серия. «Транспортные средства и энергетические установки»

же секторы участков входных и выходных патрубков (рисунок 3). На входе и выходе расчетной модели задавались расход и статическое давление соответственно, а на боковых поверхностях секторов - условия симметрии. Теплофизические свойства воздуха и стали задавались в зависимости от температуры. Расчётная модель продувалась попеременно газом и воздухом, направления течения которых, в соответствии с работой экспериментального стенда, брались противоположными. Поочередная продувка газом и воздухом матрицы теплообменного устройства проводилась до выхода на установившийся режим. Такому режиму соответствовало отличие не более чем на 1% количества переданного от газа к воздуху тепла за два смежных оборота. Исходные данные для расчета принимались в соответствии с экспериментально исследованными режимами (таблица 1).

Рисунок 3. Расчетная модель экспериментального стенда

В результате расчета были определены значения степени регенерации и гидравлического сопротивления роторного теплообменника с сетчатой матрицей (таблица 2). Как видно из таблицы, использование в расчетах теплообменника полученных в [5, 6] описывающих процессы теплоотдачи зависимостей дает хорошее совпадение с экспериментом. Максимальное различие между расчетными и экспериментально определенными значениями степени регенерации теплообменника с сетчатой матрицей не превышает 0.6%.

Следует также отметить весьма близкое совпадение расчетных и экспериментальных значений гидравлического сопротивления теплообменника с сетчатой матрицей и соответственно апробации применяемых в расчете зависимостей [5, 6].

Таблица 2.

	Эксперимент			Расчет			
	Перепад давле-	Перепад давле-	Степень ре-	Перепад давле-	Перепад давле-	Степень ре-	
	ния на «воз-	ния на «газовой»	генерации, %	ния на «воздуш-	ния на «газовой»	генерации, %	
	душной» сто-	стороне тепло-		ной» стороне	стороне тепло-		
	роне теплооб-	обменника, Па		теплообменника,	обменника, Па		
	менника Па			Па			
Режим 1	981	814	80.56	1029	841	80.09	
Режим 2	775	608	80.26	803	628	79.87	
Режим 3	588	471	79.47	603	489	79.12	

Значения степени регенерации и потерь давления теплообменного устройства

Выводы

- 1. Получены экспериментальные значения степени регенерации и гидравлического сопротивления теплообменника с сетчатой матрицей.
- 2. Выполнено численное моделирование теплогидравлических характеристик теплообменника с сетчатой матрицей с использованием полученных уточненных зависимостей [5, 6].
- Получено близкое совпадение расчетных и экспериментально определенных значений степени регенерации и гидравлического сопротивления теплообменника с сетчатой матрицей.

Литература

1. Dr. David Gordon Wilson, MIT Chief Scientist, «The basis for the prediction of high thermal efficiency in WTPI gas-turbine engines», Wilson TurboPower Inc., 2002.

- 2. Плотников Д.А. Разработка и исследование дисковых секционных регенераторов автотракторных ГТД // Диссертация на соискание ученой степени кандидата технических наук, 1981. с. 22-26.
- 3. Лебедь Н. Исследование гидравлических и теплообменных характеристик теплопередающих поверхностей для вращающегося регенератора секционного типа, Научнотехнический отчет, 1971. – С. 44-45.
- 4. Алексеев Р.А., Костюков А.В. Повышение эффективности роторного теплообменника малоразмерного газотурбинного двигателя. –М.: Известия МГТУ "МАМИ" № 1(13) 2012 т. 1. с. 52.
- 5. RONALD Alexeev, ANDREI Kostyukov Research of thermal and hydraulic processes in the structured rotary regenerator. International Automotive Conference «Science and Motor Vehicles 2013» materials, pp. 395 491.
- 6. Алексеев Р.А., Костюков А.В. Исследование теплогидравлических процессов в пористой матрице роторного теплообменника. Материалы конференции «XIX Школа-семинар молодых ученых и специалистов под руководством академика РАН А.И. Леонтьева».

Влияние углов установки управляемых колес на безопасность АТС при криволинейном движении

к.т.н. доц. Красавин П.А., к.т.н. доц. Надеждин В.С. Университет машиностроения (495) 223-05-23 (доб. 1457), <u>sopr@mami.ru</u>

Аннотация. В настоящей статье рассматривается возможность снижения числа дорожно-транспортных происшествий (ДТП), происходящих при криволинейном движении, путем выбора оптимальных параметров угловой ориентации управляемых колес и повышения критической скорости прохождения поворота.

<u>Ключевые слова:</u> активная безопасность, углы установки управляемых колес.

Конструктивные отказы и поломки, в качестве причины, составляют лишь 4...5% от общего числа причин ДТП. Поэтому необходимо искать решение проблемы повышения безопасности не только в повышении прочностных параметров элементов и деталей АТС по критериям надежности, долговечности и безотказности [1].

Одной из основных причин ДТП в Российской Федерации, по данным ГИБДД, является несоблюдение водителями скоростного режима (более 25% от общего числа ДТП) [2], что особенно опасно при криволинейном движении, т.к. непосредственно связано с вероятностью потери устойчивости и управляемости АТС. При криволинейном движении происходит более 65% от числа всех ДТП. Основные причины ДТП следующие: выезд на полосу встречного движения, что вызвано потерей управляемости, опрокидывание и занос, что характеризует устойчивость АТС. Каждая из указанных причин связана с превышением предельной скорости выполнения маневра по критерию устойчивости или управляемости. Повышение предельных значений автоматически повышает безопасность движения ввиду повышения максимальной скорости при криволинейном движении, а, следовательно, и безопасности АТС.

Повышение предельных скоростей прохождения поворота возможно конструктивным методом путем выбора рациональных параметров угловой ориентации управляемых колес. Ряд исследований [1, 3, 4, 5] показал, что наклон плоскости качения колес к центру поворота не только не ухудшает, но напротив оказывает положительное влияние на основные эксплуатационные свойства, такие как поворачиваемость, устойчивость грузового автомобиля против опрокидывания и бокового скольжения, что в комплексе способствует повышению безопасности современного транспортного средства без наступления излишней поворачиваемости автомобиля.