- др. Оптимизация управления выпуском продукции на корпоративных предприятиях промышленности. Формирование научного и кадрового потенциала для инновационной модели развития России (практика университета). М.: Издательство НИИ ПМТ, 2010.
- 5. Боронников Д.А., Яковенко Г.В., Яковенко А.Г. Анализ опыта реализаций идей устойчивого развития экономик в целях определения концепции развития промышленных кластеров. Известия МГТУ «МАМИ». Научный рецензируемый журнал. М., МГТУ «МАМИ», № 2 (14), т. 3, 2012. с.241-248.
- 6. Аленина Е.Э., Тришкин А.Г. Формирование системы инновационного развития тракторного машиностроения. Материалы Международной научно-технической конференции Ассоциации автомобильных инженеров (ААИ) "Автомобиле- и тракторостроение в России: Приоритеты развития и подготовка кадров", посвященной 145-летию МГТУ "МАМИ". Книга 11, Москва, МГТУ «МАМИ», 2010 г.
- 7. Кудряшова В.В. Условия формирования финансовой среды российского предпринимательства. М.: Вестник МГУП, № 4. М.: МГУП, 2009.

Исследования корреляционной зависимости объема выпуска транспортных средств и оборудования от используемых факторов производства в сфере машиностроения

Дворцова О.В., Наянов Е.А. Университет машиностроения

8(903)196-52-28, <u>olgadvorsova@mail.ru</u>, 8(985)351-51-94, <u>nayanow@gmail.com</u>

Аннотация. В материалах статьи содержится исследование, устанавливающее зависимость экономической устойчивости функционирования предприятия от величины разного рода производственных затрат в сфере машиностроения, описан алгоритм расчета коэффициентов парной корреляции зависимости величины объема выпуска товаров от размеров соответствующих затрат, а также представлена попытка разработки системы социально-экономических показателей, способствующих сохранению экологического равновесия и устойчивого экономического роста.

<u>Ключевые слова:</u> устойчивое развитие, экономический рост, коэффициент взаимной (парной) корреляции, технологические инновации, экологическое равновесие

Рациональное использование природных ресурсов является обязательным условием устойчивого развития любой отрасли хозяйства в стране. Несмотря на то что уже на протяжении последних 15 лет снижение показателей природоемкости определяют одним из основных индикаторов устойчивого развития, существенных сдвигов, направленных на улучшение технологического обновления производства и снижение природоемкости как в автомобилестроительной отрасли, так и в экономике в целом, до сих пор не наблюдается. Вследствие того что экономический рост определяется лишь «сырьевым» компонентом, переход на технологически новый уровень развития производственной деятельности остается проблематичным.

Оценивая экономический рост в сфере машиностроения, следует выявить экономическую эффективность функционирования данной отрасли с точки зрения степени целесообразности используемых ресурсов и совокупности факторов производства, необходимых для создания требуемого объема продукции. Поэтому первостепенной задачей на сегодняшний день является количественное измерение устойчивости развития отрасли, выявление соотношения количественных и качественных факторов экономического роста и, следовательно, разработка системы социально-экономических показателей, которые позволили бы оценить

степень устойчивости развития предприятий машиностроительной отрасли, определили бы положительную или отрицательную динамику движения к устойчивому развитию.

В данной работе представлен алгоритм расчета коэффициентов парной корреляции зависимости величины объема выпуска товаров в сфере машиностроения от размеров производственных затрат. Все расчеты проводились на основе статистических данных в секторе «Производство транспортных средств и оборудования» по показателям российских предприятий за пятилетний период [5]. Таблица 1 отражает исследуемые показатели функционирования предприятий данной отрасли.

Таблица 1 Сводные показатели работы организаций по виду экономической деятельности «Производство транспортных средств и оборудования» за период с 2007 по 2011 гг.

Годы	Объем отгруженных товаро в собственного производства,	Среднемесяч- ная номинальная начисленная заработная	Инвестиции в основной капитал,	Затраты на технологи- ческие	В том числе		Текущне затраты на охрану окружаю ще
	выполненных работ н услуг, млрд. руб.	плата работников, руб.	млрд. руб	ниновации, млн. руб.	продуктов ые ниновации, млн. руб.	процессные ниновации, млн. руб.	й среды, млн. руб.
2007	1284	14014	68,1	27110	22775	4335	3643
2008	1513	17331	97,8	27965	20966	7000	3767
2009	1119	17368	92,2	30902	23839	7063	3358
2010	1670	20767	101,0	32473	23522	8951	3936
2011	2340	24503	120,2	41293	24503	16791	4546

На начальном этапе вычислим корреляционную связь между годовым объемом выпуска продукции (таблица 2) и размером инвестиций в основной капитал предприятий, выпускающих транспортные средства. В сформированной таблице выборки наблюдаемых значений по горизонтали отражаем наблюдаемые показатели размера капитальных вложений в отрасль «Производство транспортных средств и оборудования» (х), а по вертикали – значения объема выпуска товара (у) в соответствующем периоде. Следует отметить, что при выполнении расчетов коэффициентов взаимной (парной) корреляции будем оперировать статистическими данными в одних единицах измерения – миллиардах рублей.

Таблица 2
Выборка показателей размера инвестиций в основной капитал предприятий при соответствующем объеме выпускаемых транспортных средств (TC)

Инвестиции в основной капитал (x)	,				
Объем выпуска ТС (y)	68,1	97,8	92,2	101	120,2
1284	1	0	0	0	0
1513	0	1	0	0	0
1119	0	0	1	0	0
1670	0	0	0	1	0
2340	0	0	0	0	1

Чтобы вычислить коэффициент взаимной (парной) корреляции R (x,y), воспользуемся формулой 1:

$$R(x,y) = \frac{K[x,y]}{\sigma[x] \cdot \sigma[y]} \tag{1}$$

где: K – сумма произведений отклонений значений переменных от их математического ожидания, рассчитываемая по формуле (2);

σ – среднее квадратичное отклонение дисперсии соответствующей переменной.

$$K[x;y] = \sum_{n=1}^{\infty} \frac{1}{n} \cdot (x_i - M[x]) \cdot (y_i - M[y])$$
 (2),

где: n — количество экспериментов (в нашем случае количество лет наблюдений);

M[x], M[y] — математическое ожидание переменных х и у, определяется по формулам (3) и (4) соответственно.

$$M[x] = \sum x_i \cdot p_i$$
; $M[y] = \sum y_i \cdot p_i$ (3) и (4),

где: p_i — вероятность наступления i-го события, оценивается как равновероятная величина для каждого случая (таблица 3, таблица 4).

Таблица 3 Оценка вероятности получения показателей размера инвестиций в основной капитал предприятий в 2007, 2008, 2009, 2010 и 2011 гг.

X	68,1	97,8	92,2	101	120,2
p	0,2	0,2	0,2	0,2	0,2

По формуле (3) рассчитываем математическое ожидание: M[x] = 95,86.

Таблица 4

Оценка вероятности получения показателей объема выпуска транспортных средств в 2007, 2008, 2009, 2010 и 2011 г.г.

У	1284	1513	1119	1670	2340
p	0,2	0,2	0,2	0,2	0,2

По формуле (4) математическое ожидание для переменной у: M[y] = 1585,2.

На основе выявленных коэффициентов определяем K[x;y] = 5747,048.

Затем по формулам (5) и (6) определяем дисперсию и переходим к вычислению множителей $\sigma[x]$ и $\sigma[y]$ — среднего квадратичного отклонения (формулы (7) и (8)), знаменателя формулы (1).

$$D[x] = \sum (x_i - M[x])^2 \cdot p_i = 281,3264 \quad D[y] = \sum (y_i - M[y])^2 \cdot p_i = 178038,2 \quad (5) \text{ и (6)},$$

$$\sigma[x] = \sqrt{D[x]} = 16,77279 \quad \sigma[y] = \sqrt{D[y]} = 421,946 \quad (7) \text{ и (8)}.$$

Имея в наличии все коэффициенты, используемые в формуле (1), рассчитаем коэффициент парной корреляции R[x;y] = 0.81205.

На втором этапе определим влияние размера заработной платы на годовой объем выпуска продукции. Для этого подберем статистические данные по уровню заработной платы за тот же временной промежуток (таблица 5) и с учетом количества занятых в данной отрасли работников установим вероятность получения соответствующего показателя (таблица 6, 7, 8).

22

Таблица 5

Сводные показатели уровня заработной платы и численности работников по виду экономической деятельности «Производство транспортных средств и оборудования» за период с 2007 по 2011 гг.

Годы	Среднемесячная номинальная начисленная заработная плата работников, руб.	Среднегодовая численность работников, тыс. чел.	Среднемесячная номинальная начисленная заработная плата всех работников отрасли, млрд. руб.
2007	14014	1147,9	16,1
2008	17331	1156,3	20,0
2009	17368	1041,7	18,1
2010	20767	996,7	20,1
2011	24503	1033,3	25,3

Таблица 6 Выборка значений показателей уровня заработной платы при соответствующем объеме выпускаемых транспортных средств (TC)

Заработная плата (x)					
Объем выпуска TC (y)	16,1	20,0	18,1	20,1	25,3
1284	1	0	0	0	0
1513	0	1	0	0	0
1119	0	0	1	0	0
1670	0	0	0	1	0
2340	0	0	0	0	1

Таблица 7 Оценка вероятности получения показателей размера заработной платы в 2007, 2008, 2009, 2010 и 2011 гг.

Х	16,1	20	18,1	20,1	25,3
p	0,2	0,2	0,2	0,2	0,2

Таблица 8 Оценка вероятности получения показателей объема выпуска транспортных средств в 2007, 2008, 2009, 2010 и 2011 г.г.

У	1284	1513	1119	1670	2340
р	0,2	0,2	0,2	0,2	0,2

Математическое ожидание для двух переменных: M[x] = 19,92 и M[y] = 1585,2.

Далее определим K[x;y] = 1213,876.

Проведем аналогичные расчёты для определения дисперсии (применяя формулы (5) и (6) и вычисления множителей $\sigma[x]$ и $\sigma[y]$ – среднего квадратичного отклонения (формулы (7) и (8).

$$D[x] = \sum (x_i - M[x])^2 \cdot p_i = 9,3776; D[y] = \sum (y_i - M[y])^2 \cdot p_i = 178038,2$$

$$\sigma[x] = \sqrt{D[x]} = 3,06228673; \sigma[y] = \sqrt{D[y]} = 421,946$$

Итак, на основе полученных коэффициентов высчитаем коэффициент парной корреляции R[x;y] = 0.93944622.

На последующих стадиях проведем аналогичные вычисления для получения коэффициентов парной корреляции, которые установят зависимость объема выпускаемой продукции от затрат на технологические инновации (нововведения как в области используемого сырья, так и применяемых производственных процессов) и от величины затрат на охрану окружающей среды. Итоговые расчеты занесем в таблицу 9.

Таблица 9

Коэффициенты парной корреляции зависимости объема выпускаемой продукции от различных затрат предприятий по виду экономической деятельности «Производство транспортных средств и оборудования»

	R [x; y]	Инвестиции в основной капитал	Среднемесячная номиналь ная начисле нная заработная плата работников	Затраты на технологические инновации	В том продуктовые ниновации	чнсле процессные инноващин	Текущне затраты на охрану окружающей среды
I	объем гродукции	0, 81205	0,93945	0,87423	0,39181	0,93018	0,99418

Выводы

В ходе проведенного исследования и анализа полученных коэффициентов, представленных в таблице 9, можно констатировать следующие положения:

- с учетом того, что коэффициент парной корреляции по зарплате существенно превосходит аналогичный показатель инвестиций в основной капитал, мы можем говорить о том, что в данном случае речь идет об интеллектуализации производственных процессов в машиностроении, и на сегодняшний момент автомобильное производство может быть признано более трудоемким, чем капиталоемким;
- очень близок к единице коэффициент, характеризующий деятельность предприятий, связанную с охраной окружающей среды, или его мероприятия по устранению уже нанесенного вреда посредством производственной деятельности;
- данный факт свидетельствует о том, что в настоящее время происходит качественный пересмотр основных механизмов функционирования предприятия, и экологический критерий в данной сфере выступает одним из главных параметров оценки целесообразного ведения предприятием своей экономической деятельности, так как доля его влияния на объем производства наивысшая;
- этот коэффициент можно рассматривать как один из параметров, позволяющих предприятию продолжать свое функционирование или всерьез задуматься о кардинальном изменении производственного процесса;
- весьма невысокие коэффициенты парной корреляции зависимости объема продукции от продуктовой инновационной деятельности подтверждают тот факт, что затраты в данную область рассматриваются предприятиями скорее рискованными, нежели перспективными.

Литература

- 1. Кибзун А.И., Горяинова Е.Р., Наумов А.В., Сиротин А.Н. Теория вероятностей и математическая статистика. Базовый курс с примерами и задачами. М.: «ФИЗМАТЛИТ», 2002. 224 с.
- 2. Кравцова В.И., Катанаев Н.Т., Аленина Е.Э. Оптимальный выпуск продукции на корпоративных предприятиях промышленности. Сборник избранных трудов. 4-й Международный научный симпозиум «Современное автотракторостроение и высшая школа России», посвященный -140-летию МГТУ «МАМИ».- М: МГТУ «МАМИ», 2005.
- 3. Кремер Н.Ш., Путко Б.А., Тришин И.М. Математика для экономистов: от арифметики до эконометрики. М.: «Высшее образование», 2007 г. –647 с.
- 4. Мировая экономика: глобальные тенденции за 100 лет / Под ред. И.С. Королева. М.: Экономисть, 2003. 604 с.
- 5. Промышленность России. 2012: Cтат.сб./ Росстат M., 2012. 445 c.
- 6. Тумасянц С.М., Платко А.Ю., Наянов Е.А. Исследование корреляционной взаимосвязи уровней развития промышленности и других отраслей с макроэкономическими показателями // Фундаментальные и прикладные исследования кооперативного сектора экономики. 2012.- № 2.

Формирование инновационной целевой функции, определяющей этапы развития большого экономического цикла

д.э.н. Сельсков А.В., к.э.н. Сельскова Т.В. Университет машиностроения 8(495) 228-48-79

Аннотация. Публикация посвящена проблемам формирования структуры инновационной целевой функции, которая представляет собой сумму функций передового экономического развития и стабилизации форм общественного существования с целью предотвращения политических и экономических кризисов в период внедрения новшеств в жизнь общества. Основной задачей данного исследования является поиск «мягкого» решения, когда в условиях наличия рыночной привлекательности долговых обязательств удается сформировать инновационный потенциал, достаточный для получения такого объема кредитных ресурсов, который позволит приступить к началу выполнения нового большого экономического цикла.

<u>Ключевые слова:</u> инновационная целевая функция, политические и экономические кризисы, инновационный потенциал, кредитные ресурсы, экономический цикл, инновационный продукт

Структура развития экономической системы состоит из большого экономического цикла, ход развития которого включает в себя конкурентное (инновационное), инвестиционное, экспансивное и эмиссионное развитие хозяйствующих субъектов. Очевидно, что конкурентные взаимоотношения определяют интенсивную сторону экономического развития, а прочие формы хозяйствования формируют экстенсивную сторону взаимодействия труда и капитала. Фактор качества вытекает из формирования ряда инновационных разработок, определяющих конкурентное преимущество предприятия (Inn). Финансовые инвестиции, экспансия и эмиссия формируют количественные формы экономических преимуществ хозяйственного развития. Финансовые инвестиции (inv), сформированные на базе кредитных ресурсов (К) или в результате рыночной деятельности, определяют объемы и мощности инновационной материально-технической базы (МТБ). Географическая экспансия (geo) определяет ресурсный подход к региональному развитию, когда экономические ресурсы (R) присоединенных террито-