Литература

1. *Sukhomlinov L.G., Engelsberg V.K., Davydov V.N.* A finite element membrane model for the analysis of axisymmetric sheet metal forming processes // Int. J. Mech. Sci. 1992. V. 34. N 3. P. 179-193.

2. Петров В.К., Михайлова В.Л., Сухомлинов Л.Г. Применение осесимметричной жесткопластической безмоментной конечноэлементной модели для определения коэффициентов трения в процессах формоизменения // Известия МГТУ "МАМИ". 2012. №2(14), т. 2. С. 150-158.

3. *Nakamachi E., Takezono S., Sowerby R.* A numerical analysis of the hydraulic bulging of circular disks into axisymmetric dies // Trans.ASME. J.Appl.Mech. 1982. V. 49. N 3. P. 501-506.

Предельные возможности операции ротационной вытяжки осесимметричных деталей из анизотропных материалов

д.т.н. проф. Яковлев С.С., д.т.н. проф. Трегубов В.И., Осипова Е.В. ФГБОУ ВПО «Тульский государственный университет» 8 (4872) 35-14-82, mpf-tula@rambler.ru

Аннотация. Показано влияние технологических параметров на предельные возможности формоизменения по различным критериям разрушения операции ротационной вытяжки с утонением стенки анизотропного материала.

<u>Ключевые слова</u>: ротационная вытяжка, анизотропия, деформация, разрушение, повреждаемость, напряжение, ролик подача, степень деформации.

При изготовлении тонкостенных цилиндрических деталей в настоящее время нашли широкое применение методы обработки давлением с созданием локального очага деформации. Одним из таких методов является ротационная вытяжка (PB). Теоретическое изучение процесса PB с утонением осложняется наличием локальной деформации и объемным характером напряженно-деформированного состояния материала в пластической области. Надежность и эффективность технологических процессов ротационной вытяжки обеспечиваются правильным выбором технологических параметров [1-3].

В работе [4] изложена математическая модель формоизменения трубной заготовки при ротационной вытяжке на специализированном оборудовании тонкостенных цилиндрических деталей с утонением стенки коническими роликами с учетом локального очага деформации и фактической подачи S_{ϕ} металла в очаг деформации (рисунок 1). В отличие от известных подходов к анализу кинематики течения материала в очаге пластической деформации в работе принято, что процесс реализуется в условиях квазиплоской деформации т.е. рассматрива-

те принято, что процесс реализуется в условиях квазиплоской деформации, т.е. рассматривается течение материала в плоскости, перпендикулярной оси *z*, и учитываются соответствующие величины касательных напряжений.

Рассмотрен вопрос о распределении скоростей течения материала в очаге деформации при установившемся деформировании. Предложены выражения для оценки радиальной, тангенциальной и осевой составляющих скоростей течения материала в локальном очаге пластической деформации. В дальнейшем вычисляются компоненты скоростей деформаций по известным скоростям течения материала в цилиндрической системе координат.

Используя уравнение равновесия в цилиндрической системе координат и уравнение пластического течения, устанавливающие связи между напряжениями и скоростями деформаций, после подстановки последних в уравнения равновесия получена система уравнений для определения среднего напряжения. Записав уравнения равновесия в виде конечных разностей и разрешив каждое из них относительно среднего напряжения, получим выражения для определения величины среднего напряжения о .

Известно, что на границе входа материала в очаг пластической деформации величина осевого напряжения равна нулю, т.е. $\sigma_z = 0$. Это условие позволяет определить распределе-

ние величин среднего напряжения σ на входе материала в очаг пластической деформации, радиальных σ_r , тангенциальных σ_{θ} , осевых σ_z и касательных $\tau_{r\theta}$, $\tau_{\theta z}$, $\tau_{r\theta}$ напряжений, если предварительно вычислены компоненты скоростей деформации, их интенсивность, средняя величина накопленной интенсивности деформации в очаге пластической деформации и средняя величина интенсивности напряжения σ_{icp} в очаге деформации по кривой упрочнения материала.

Рисунок 1. Схема очага деформации при ротационной вытяжке по прямому способу

Информация о среднем напряжении и скоростях деформации позволяет рассчитать напряженное состояние в каждой точке очага деформации. Все перечисленные выше характеристики напряженного и деформированного состояния вычислялись численно с использованием метода конечных разностей.

Уравнение линии тока для материальной точки в локальном очаге пластической деформации при ротационной вытяжке коническим роликом запишется следующем образом

$$\frac{dr}{V_r} = \frac{r \, d\theta}{V_{\theta}} = \frac{dz}{V_z} \, .$$

Накопленная интенсивность деформации рассматриваемой точки на выходе из локального очага пластической деформации определяется по выражению

$$\varepsilon_i = \sum_{1}^{N_z} \xi_{iz} \, \Delta t_{ooi} \, ,$$

где Δt_{obi} - время обработки материальной точки в очаге деформации на *i*-ом обороте шпинделя; N_z - количество оборотов шпинделя, необходимое для прохождения материальной точки от входа в локальный очаг пластической деформации до его выхода.

Время обработки материальной точки в очаге деформации на *i*-ом обороте шпинделя вычисляется по формуле

$$\Delta t_{ob\,i} = \frac{S_{\phi} \, tg \, \alpha_p}{V_{R\,cp}}$$

где $S_{\phi} = St_k / t_0$; S - рабочая подача; $V_{R_{cp}}$ - средняя величина скорости вдавливания ролика

в заготовку; V_{Ri} - скорости вдавливания ролика в заготовку в *i*-ом сечении;

$$V_{Rcp} = \frac{1}{\theta_s} \int_0^{\theta_s} V_{Ri} d\theta$$

Приведенные в работе [4] выражения для определения напряженного и деформированного состояний в очаге пластической деформации позволили оценить величину накопленной повреждаемости ω_e и предельные возможности формоизменения процесса ротационной вытяжки с утонением стенки коническими роликами ε_{np} .

Величина повреждаемости материала ω_e при пластическом деформировании по деформационной модели разрушения определяется по формуле

$$\omega_e = \int_{0}^{\varepsilon_i} \frac{d\varepsilon_i}{\varepsilon_{inp}},\tag{1}$$

где $d\varepsilon_i$ - величина приращения интенсивности деформации на *i* -ом обороте шпинделя; $\varepsilon_{inp} = \varepsilon_{inp}(\sigma/\sigma_i)$ - предельная интенсивность деформации; σ - среднее напряжение; σ_i - интенсивность напряжения.

Величина предельной интенсивности деформации Е іпр находится по выражению

$$\varepsilon_{inp} = \Omega \exp\left(U\frac{\sigma}{\sigma_i}\right) (a_0 + a_1 \cos \alpha + a_2 \cos \beta + a_3 \cos \gamma),$$

где Ω , U - константы деформируемого материала, определяемые в зависимости от рода материала, согласно работам В.Л. Колмогорова и А.А. Богатова [5, 6]; α , β , γ - углы между первой главной осью напряжений и главными осями анизотропии x, y и z; a_0 , a_1 , a_2 и a_3 - константы материала, зависящие от анизотропии механических свойств материала заготовки и определяемые из опытов на растяжение образцов в условиях плоского напряженного состояния.

В зависимости от условий эксплуатации или последующей обработки изготовляемого изделия уровень повреждаемости не должен превышать величины χ, т.е.

$$\omega_e \le \chi \,. \tag{2}$$

 (\mathbf{a})

До деформации (при $t = t_0$) $\omega_e = 0$, а в момент разрушения ($t = t_p$) $\omega_e = \chi = 1$. При назначении величины степени деформации учитывались рекомендации по степени использования запаса пластичности В.Л. Колмогорова и А.А. Богатова [5, 6]: $\chi = 0,25$ - для ответственных деталей, работающих и подвергающихся после обработки давлением термической обработке (отжигу или закалке); $\chi = 0,65$ - для неответственных деталей.

Расчеты выполнены для трубной заготовки из стали 12Х3ГНМФБА с наружным радиусом трубной заготовки R_6 =64,15 мм, толщиной стенки трубы t_0 =6,05 мм; диаметром ролика D_p =280 мм; частотой вращения шпинделя n =75 мин⁻¹. Механические характеристики стали 12Х3ГНМФБА приведены в работе [7]. Технологические параметры и геометрия ролика ротационной вытяжки изменялись в следующих диапазонах: степень деформации $\varepsilon = 0, 1...0, 6$; угол конусности ролика $\alpha_p = 10...30^\circ$; коэффициент трения на оправке $\mu_o = 0, 05...0, 2$.

На рисунке 2 и 3 приведены графические зависимости изменения накопленной повреждаемости ω_e в материале готовой детали от рабочей подачи *S* и углах конусности ролика α_p .

Анализ результатов расчетов и графических зависимостей показывает, что с уменьшением угла конусности ролика α_p , рабочей подачи *S* и увеличением степени деформации є величина накопленных микроповреждений ω_e возрастает. Максимальная величина накопленных микроповреждений ω_e соответствует точкам, принадлежащим наружной поверхности изготовляемой детали.

Рисунок 2. Зависимости изменения ω_e от S: кривая 1 – при $r = r_e$; кривая 2 – при $r = r_0$ ($\varepsilon = 0.4$; $\alpha = 10^\circ$; z = 0)

Рисунок 3. Зависимости изменения ω_e от α_p : кривая 1 – при $r = r_6$; кривая 2 – при $r = r_0$ ($\epsilon = 0,4$; S = 1 мм/об; z = 0)

Предельные возможности процесса ротационной вытяжки с утонением стенки оценивались допустимой величиной степени использования ресурса пластичности по выражению (2), максимальной величиной растягивающего напряжения на выходе из локального очага пластической деформации

$$\sigma_z \le 2\tau_{s\theta z} \sqrt{1 - c_{\theta z}} , \qquad (2)$$

а также по критерию шейкообразования тонкостенной трубной заготовки, полученному на основе критерия положительности добавочных нагрузок: dP = 0; dM = 0 [7]. Здесь $\tau_{s\theta z}$ и $c_{\theta z}$ - сопротивление материала на сдвиг и характеристика анизотропии в условиях плоской деформации.

Предельные степени деформации ε_{np} исследовались в зависимости от угла конусности ролика α_p , рабочей подачи *S* и геометрических размеров трубной заготовки путем числен-

ных расчетов на ЭВМ.

Графические зависимости изменения предельной степени деформации ε_{np} , вычисленной по допустимой величине степени использования ресурса пластичности (при $\chi = 1$), максимальной величиной растягивающего напряжения на выходе из локального очага пластической деформации, а также критерию шейкообразования тонкостенной трубной заготовки при ротационной вытяжке трубных заготовок из стали 12ХЗГНМФБА, от угла конусности ролика α_p и рабочей подачи *S* приведены на рисунке 4 и 5 соответственно. Здесь введены следующие условные обозначения: кривая 1 – соответствует результатам расчетов предельной степени деформации ε_{np} , вычисленной по максимальной величине растягивающего напряжения на выходе из очага деформации; кривая 2 - по критерию шейкообразования тонкостенной трубной заготовки; кривая 3 - по допустимой величиной степени использования ресурса пластичности (при $\chi = 1$).

Рисунок 4. Зависимости изменения ε_{np} от α_p для стали 12Х3ГНМФБА (S = 1 мм/об)

Рисунок 5. Зависимости изменения ε_{np} от *S* для стали 12Х3ГНМФБА ($\alpha_p = 10^\circ$)

Анализ графических зависимостей и результатов расчетов показывает, что с увеличением угла конусности ролика α_p от 10° до 30° предельная степень деформации ε_{np} , вычисленная по максимальной величине осевого напряжения на выходе из локального очага пластической деформации, увеличивается в 2 раза, а увеличение рабочей подачи *S* от 0,5 мм/об до 1,5 мм/об – ведет к уменьшению предельной степени деформации ε_{np} от 0,80 до 0,35.

Установлено, что основное влияние на изменение предельной степени деформации ε_{np} , вычисленной по критерию шейкообразования тонкостенной трубной заготовки, оказывает влияние на угол конусности ролика α_p . Увеличение угла конусности ролика α_p сопровождается ростом предельной степени деформации ε_{np} . Величина рабочей подачи *S* не оказывает существенного влияния на изменение предельной степени деформации ε_{np} , вычисленной по критерию шейкообразования тонкостенной трубной заготовки.

Анализ результатов расчетов и графических зависимостей, приведенных на рисунке 4 и 5, показывает, что предельные степени деформации ε_{np} при ротационной вытяжке могут

ограничиваться максимальной величиной растягивающего напряжения на выходе из локального очага пластической деформации, критерием шейкообразования тонкостенной трубной заготовки и допустимой величиной степени использования ресурса пластичности. Этот факт зависит от механических свойств материала цилиндрической заготовки и технологических параметров процесса ротационной вытяжки с утонением.

Установлено, что предельные возможности процесса ротационной вытяжки ε_{np} трубных заготовок из стали 12Х3ГНМФБА ограничиваются критерии шейкообразования (рисунок 2 и рисунок 3). При этом использование заготовок из стали 10 ограничивает предельные возможности процесса как по допустимой величине степени использования запаса пластичности (S < 0.8 мм/об), так и по максимальной величине растягивающего напряжения на выходе из очага пластической деформации (S > 0.8 мм/об) при $\alpha_n = 10^\circ$.

Таким образом, авторами выявлено влияние технологических параметров на величину накопленных микроповреждений и предельные возможности формоизменения по различным критериям разрушения операции ротационной вытяжки с утонением стенки анизотропного материала.

Работа выполнена по государственным контрактам в рамках федеральной целевой программы «Научные и научно-педагогические кадры инновационной России» на 2009 - 2013 годы и грантам РФФИ.

Литература

1. Баркая В.Ф., Рокотян С.Е., Рузанов Ф.И. Формоизменение листового материала. М.: Металлургия. 1976. 294 с.

2. Гредитор М.А. Давильные работы и ротационное выдавливание. М.: Машиностроение. 1971. 239 с.

3. Могильный Н.И. Ротационная вытяжка оболочковых деталей на станках. М.: Машиностроение. 1983. 190 с.

4. Яковлев С.С., Трегубов В.И., Ремнев К.С. Ротационная вытяжка с утонением стенки трубных заготовок из анизотропного материала // Кузнечно-штамповочное производство. 2011. №12. С. 10-17.

5. Богатов А. А., Мижирицкий О.И., Смирнов В. Ресурс пластичности металлов при обработке давлением. М.: Металлургия, 1984. 144 с.

6. Колмогоров В.Л. Механика обработки металлов давлением. Екатеринбург: Уральский государственный технический университет (УПИ), 2001. 836 с.

7. Яковлев С.С., Трегубов В.И., Яковлев С.П. Ротационная вытяжка с утонением стенки осесимметричных деталей из анизотропных трубных заготовок на специализированном оборудовании / Под ред. С.С. Яковлева. М.: Машиностроение, 2009. 265 с.

Теоретический анализ процесса комбинированного радиально-обратного выдавливания деталей с фланцем

к.т.н. Алиева Л.И., Грудкина Н.С. ДГМА, г. Краматорск, Украина pnir@dgma.donetsk.ua

Анотация. Предложена математическая модель процесса комбинированного радиально-обратного выдавливания деталей типа стакан с фланцем, позволяющая определять энергосиловые параметры процесса и исследовать поэтапное и конечное формоизменение заготовки. Проведен сравнительный анализ картин поэтапного формоизменения на основе предложенной расчетной схемы, конечноэлементного моделирования и экспериментальных данных.

<u>Ключевые слова:</u> фланец; выдавливание; энергосиловые параметры; формоизменение.