Чтобы определить способы нивелирования колебаний, нужно определиться с их видом, законом изменения и природой возникновения. Этому посвящено довольно много исследований, ряд специалистов приступили к непосредственному рассмотрению динамики процесса размерообразования при комбинированной обработке.

В ходе исследований часть параметров математической модели оставались постоянными, а часть варьировалась. Результатом работы программ являлись среднеарифметические значения погрешности обработки в десяти сечениях продольного сечения детали, рассчитанные по десяти равноотстоящим точкам каждого поперечного сечения, а также среднее арифметическое значение и среднее квадратическое отклонение погрешности.

Для разработки рекомендаций по проектированию параметрически управляемых технологических систем комбинированной обработки было необходимо дополнительно выполнить параметрические исследования основных характеристик технологических систем комбинированной обработки, их взаимодействия и взаимовлияния.

Определенный интерес представляют зависимости, полученные по результатам исследований влияния частоты вращения обрабатываемого вала на погрешность обработки. Здесь наблюдалось увеличение погрешности обработки при изменении частоты вращения с 400 до 600 *об / мин* и ее уменьшение при достижении частоты вращения 800 *об / мин*. Это объясняется изменением соотношения между оборотной частотой ω , длиной заготовки l и частотой изгибных колебаний Ω , а также величиной скорости изменения суммарной жесткости технологической системы комбинированной обработки.

Анализ среднеквадратичных отклонений полученного размера от заданного позволяет выявить оптимальные режимы ведения обработки, а также критические значения кинематических характеристик технологической системы комбинированной обработки. Полученные режимы совпадают с ранее теоретически определенными.

Таким образом, при проектировании технологических систем комбинированной обработки необходимо, во-первых, определить направления поиска оптимальных решений задач по совершенствованию технологических систем на основе анализа известной технической информации о существующих аналогах и перспективах развития.

И, во-вторых, установить, что целесообразно принять в качестве комплексного показателя, обеспечивающего эффективную и удобную форму оценки погрешности обработки и управления процессом достижения заданной точности.

При комбинированной обработке деталей класса нежестких валов может быть принято соотношение частоты изгибных колебаний и оборотной частоты вращения заготовки. При этом анализ полученных комплексных зависимостей, связывающих как технологические, так и жесткостные характеристики технологической системы комбинированной обработки должен показать как качественную, так и количественную зависимости выходного параметра от управляемого.

К анализу механики процесса резания. Резание инструментом с притупленной режущей кромкой

д.т.н. проф. Оленин Л.Д. МГТУ МАМИ

Основные обозначения, принятые в работе

S – подача на проход мм;

t – глубина резания мм;

а и *a*₁ – инструментальная и фактическая толщины срезаемого слоя;

V, *V*₁ ⁻ скорость резания и скорость схода стружки;

v_n, *v_τ* – нормальная и тангенциальная составляющие скорости смещения материала заготовки (перед плоскостью сдвига);

Раздел 2. Технология машиностроения и материалы.

- *V*₇₁ ⁻тангенциальная составляющая скорости после плоскости сдвига;
- *V*2[−] скорость смещения материала в зоне выглаживания;
- *G*¹ −относительная скорость схода стружки (в долях от скорости резания);
- $\phi, \phi_1 -$ главный и вспомогательный углы в плане;
- γ_1 главный передний угол в зоне стружкообразования;
- λ- угол наклона главной режущей кромки;
- ^γ2⁻ угол между основной плоскостью и касательной к поверхности инструмента в зоне выглаживания (аналогичный переднему углу в зоне 1);
- β_1 угол сдвига в зоне стружкообразования;
- β_2 угол сдвига на входе в зону выглаживания;
- *h_i* общая ширина площадки износа по задней поверхности, включая скругление;
- *r* радиус скругления режущей кромки в плоскости стружкообразования;
- l_i длина проекции активного участка режущей кромки на основную плоскость;
- 52⁻ скорость смещения материала относительно инструмента в зоне выглаживания в долях от скорости резания;
- β_2 угол сдвига на входе в зону выглаживания;
- *σ* истинный предел текучести обрабатываемого материала;
- В константа, характеризующая склонность материала к упрочнению;
- μ коэффициент трения ;
- *a_n* ударная вязкость обрабатываемого материала.

Настоящая работа посвящена анализу механики процесса резания и является продолжением работы [1], в которой исследован акт стружкообразования как основы процесса резания. Однако в реальных условиях режущая кромка либо притуплена износом, либо имеет скругленный профиль, выполненный еще при изготовлении. Поэтому фактическая толщина срезаемого слоя всегда меньше глубины проникновения режущего клина в тело заготовки. Часть его подминается скругленной кромкой и подвергается пластической деформации, подобно тому как это делается при выглаживании. (см. рис. 1).

Рис. 1. Схема процесса и поле скоростей для случая резания инструментом с притупленной режущей кромкой [1]

На этом основании процесс резания рассматривается нами как совокупность двух непрерывных актов: стружкообразования и пластического деформирования приповерхностного

слоя. При этом в каждом из актов деформируемый (обрабатываемый) материал как механическая система имеет более одной степени подвижности. Проявляется это в том, что скорость схода стружки всегда меньше скорости резания, но её или так называемую «продольную усадку» нельзя однозначно задать: она зависит от целого набора условий резания и устанавливается самопроизвольно.

Ранее [1] энергетическим методом с использованием экстремальных принципов механики выполнен анализ акта стружкообразования, предложены также единые для обоих актов схема процесса и план скоростей, выведены основные уравнения, характеризующие механику резания:

$$v_n = v \sin \beta_1; \tag{1}$$

$$v_{\tau} = v_n ctq\beta_1; \tag{2}$$

$$v_1 = v \cdot \zeta_{1} \tag{3}$$

$$v_{\tau 1} = v_n t q \left(\beta_1 - \gamma_1\right), \tag{4}$$

$$\boldsymbol{v}_{n2} = \boldsymbol{v}_{;} \tag{5}$$

$$v_{\tau 2} = v \sin \theta \qquad (6)$$

$$v_2 = \frac{v}{\cos \theta} \tag{7}$$

Кроме того, выведены уравнения для приращения деформации при стружкообразовании в случае резания инструментом с наклоном режущей кромки (в двух вариантах), а также для относительной скорости схода стружки и угла сдвига в зоне стружкообразования:

$$\Delta \overline{\varepsilon}_{1} = \frac{1}{\sqrt{3}} \sqrt{\left[ctg \ \beta_{1} + tg \left(\beta_{1} - \gamma_{1} \right) \right]^{2} + \lambda^{2}}, \qquad (8)$$

$$\Delta \varepsilon_1 = \frac{1}{\sqrt{3}\cos\gamma_1} \sqrt{(\varsigma_1 + \frac{1}{\varsigma_1} - 2\sin\gamma_1)^2 + \lambda^2 \cos^2\gamma_1}$$
(9)

$$\zeta_1 = \frac{v_1}{v} = \frac{\sin \beta_1}{\cos(\beta_1 - \gamma_1)} \tag{10}$$

$$\beta_1 = \operatorname{arctg} \frac{\zeta_1 \cos \gamma_1}{1 - \zeta_1 \sin \gamma_1} \tag{11}$$

Здесь λ - угол наклона главной режущей кромки.

Прогнозируемая скорость схода стружки определена из условия минимума доли давления резания, подводимого через переднюю поверхность:

$$\Delta q_{z1} = \frac{(1+B\frac{\Delta\varepsilon_1}{2})\Delta\varepsilon_1 + \frac{a_n \sum b_i (1+\varsigma_1)}{2\sigma \cdot S \cdot t}}{1-C_{\rho}\varsigma_1},$$
(12)

$$C_{\rho} = \frac{\sin \rho}{\cos(\gamma_1 - \rho)},\tag{13}$$

где: *Ср* – приведенный коэффициент трения на передней поверхности.

Раздел 2. Технология машиностроения и материалы.

Деформации и углы на входе в зону выглаживания

Особенностью механики деформирования приповерхностного слоя является то, что в отличие от срезаемой стружки этот слой не отделяется от заготовки, поэтому скорость смещения материала относительно инструмента в этой зоне однозначно задана (см. (7)). При этом очаг деформации не ограничивается слоем вблизи плоскости сдвига на входе в зону выглаживания: пластическое деформирование продолжается на всём участке обтекания скругленной режущей кромки в плоть до выхода на плоский участок.

По аналогии с зоной 1 запишем формально уравнения, характеризующие деформацию на входе в зону выглаживания 2:

$$\Delta \varepsilon_2 = \frac{1}{\sqrt{3}} \left[ctg \beta_2 + tg \left(\beta_2 - \gamma_2 \right) \right]$$
(14)

$$\Delta \varepsilon_2 = \frac{1}{\sqrt{3}\cos\gamma_2} (\varsigma_2 + \frac{1}{\varsigma_2} - 2\sin\gamma_2)$$
(15)

$$\zeta_2 = \frac{v^2}{v} = \frac{\sin\beta_2}{\cos(\beta_2 - \gamma_2)} \tag{16}$$

$$\beta_2 = \operatorname{arctg} \frac{\zeta_2 \cos \gamma_2}{1 - \zeta_2 \sin \gamma_2} \tag{17}$$

Здесь обозначено: ς_2^- относительная скорость смещения материала на входе в зону выглаживания; γ_2^- угол между основной плоскостью и касательной к скругленной поверхности инструмента (аналогичный переднему углу в зоне 1); β_2^- угол наклона плоскости сдвига на входе взону 2 к плоскости резания.

Определим значения этих показателей.

Подставляя это значение скорости V_2 из формулы (7) в выражение (16), получаем:

$$\zeta_2 = \frac{v_2}{v} = \frac{1}{\cos \theta}$$
(18)

Это значит, что в зоне формирования упрочненного слоя имеет место не «усадка», а удлинение материала.

Кроме того, угол между основной плоскостью и касательной к поверхности инструмента (аналогичный переднему углу в зоне 1) зависит от угла θ и равен (рис. 1):

$$\gamma_2 = \frac{\pi}{2} - \theta \tag{19}$$

Подставляя в выражение (14) значение 52 из формулы (16), получаем:

$$\frac{1}{\cos\theta} = \frac{\sin\beta_2}{\cos(\beta_2 - \gamma_2)}$$

Это условие выполняется при значении угла сдвига, равного:

$$\beta_2 = \frac{\pi}{2} \tag{20}$$

Другими словами, угол сдвига на входе в зону 2, также как и передний угол задан однозначно.

Приращение деформации при входе в зону 2 находим, подставляя полученное значение

 β_{2} уравнение (10):

$$\Delta \varepsilon_2 = \frac{1}{\sqrt{3}} ctg \gamma_2 = \frac{tg \theta}{\sqrt{3}}$$
(21)

Таким образом, определены все показатели, характеризующие механику деформировния на входе в зону выглаживания, но деформирование приповерхностного слоя с этого только начинается. Оно продолжается на всем пути обтекания материалом скругленной режущей кромки инструмента. При этом к деформации $\Delta \varepsilon_2$, полученной на входе в зону 2, продолжает добавляться деформация сдвига, но обратного знака. По мере продвижения вдоль скруглённой поверхности с уменьшением угла θ скорость деформации уменьшается вплоть до полного её прекращения на выходе из-под задней поверхности инструмента. Обу-

словлено это тем, что в этой точке скорость смещения V_2 снова становится равной скорости резания.

Влияние полноты съёма стружки на давление резания

Для дальнейших выкладок нам понадобятся параметры: *J* – коэффициент полноты съёма стружки и δ – натяг в зоне выглаживания:

$$J = \frac{a_1}{a} \tag{22}$$

$$\delta = a - a_1 = r(1 - \cos \theta) \tag{23}$$

где: *a* – глубина проникновения режущего клина в тело заготовки или инструментальная толщина срезаемого слоя;

*a*₁ – фактическая толщина срезаемого слоя;

r – радиус скругления режущей кромки, измеренный в плоскости стружкообразовния; θ –

У – угол контакта режущей кромки в зоне выглаживания.

Эти параметры изменяются в следующих пределах:

$$0 \le J \le 1, \tag{24}$$

$$a_1 \le o \le a \tag{25}$$

С учетом фактической толщины срезаемого слоя уравнение для доли давления резания, подводимого через переднюю поверхность, примет следующий вид:

$$\Delta q_{z1} = \frac{\Delta q_{\varepsilon} J + a_n \Sigma l_i \frac{1+\zeta_1}{2\sigma St}}{1 - C_{\rho} \zeta_1}$$
(26)

Соответственно полное давление будет равно:

$$\Delta q_{z} = \frac{(1+B\frac{\Delta\varepsilon}{2})\Delta\varepsilon J + a_{n} \sum l_{i} \frac{1+\varsigma_{1}}{2\sigma St}}{1-C_{\rho}\varsigma_{1}} + \Delta q_{rz} + \Delta q_{h3}$$
⁽²⁷⁾

Здесь Δq_{rz} – доля давления резания, связанного с деформированием приповерхностного слоя в зоне выглаживания; Δq_{h3}^{μ} – доля давления, расходуемая на преодоление сил трения на плоских участках площадок износа по задней поверхности. Раздел 2. Технология машиностроения и материалы.

Давление на контакте со скругленной поверхностью режущей кромки

Для определения мощности, затрачиваемой на деформацию приповерхностного слоя, надо знать либо глубину проникновения и распределение деформаций в приповерхностном слое, либо распределение давления на контакте со скругленной частью режущей кромки. И то и другое проблематично для энергетического метода анализа.

Рассматривая скругленную кромку инструмента как боковую поверхность цилиндрического пуансона, вдавливаемого поперек образующей в полупространство в направлении вектора скорости резания, оцениваем распределение гидростатического давления на контакте. Согласно [2], в случае наличия контактного трения оно описывается уравнением:

$$q_r = \frac{1 + \pi - \theta_z}{1 - 1,3063 \ \mu}$$
(28)

где: q_r – давление на контакте; θ_z – угол между нормалью к поверхности контакта и направлением перемещения инструмента; μ – коэффициент трения.

Но согласно схеме (рис. 1),

$$\theta_z = \frac{\pi}{2} - \theta \tag{29}$$

Поэтому можно записать:

$$q_{r} = \frac{1 + \frac{\pi}{2} + \theta}{1 - 1,3063 \ \mu}$$
(30)

Обозначения углов понятны из схемы, приведенной на рис. 1.

Используя (28) и(30), находим нормальную удельную силу и трение на контакте со скругленной кромкой:

$$p_r = \frac{\sigma_s \left(1 + \frac{\pi}{2} + \theta\right)}{1 - 1,3603 \ \mu} \tag{31}$$

$$\tau = \frac{\mu \sigma_{s} \left(1 + \frac{\pi}{2} + \theta\right)}{1 - 1.3603 \ \mu}$$
(32)

где p_r – удельная сила; τ – контактное трение на скругленной части кромки.

Распределение сил, действующих на скругленной кромке, схематично показано на рис. 2. Вклад в соответственные составляющие силы резания от этого давления находим интегрированием по углу θ .

$$\Delta P_{zr} = lr \int_0^\theta \frac{p_r}{\cos \rho} \sin(\theta + \rho) d\theta$$
(33)

$$\Delta P_{yr} = lr \int_0^\theta p_r \cos(\theta + \rho) d\theta \qquad (34)$$

С учетом (32) получаем:

$$\Delta P_{zr} = lr \frac{\sigma}{(1 - 1.36\mu)\cos\rho} \int_0^\theta (1 + \frac{\pi}{2} + \theta)\sin(\theta + \rho)\theta d\theta$$
(35)

$$\Delta P_{yr} = lr \frac{\sigma}{(1-1,36\,\mu)\cos\rho} \int_0^\theta (1+\frac{\pi}{2}+\theta)\cos(\theta+\rho)d\theta$$
(36)

148Известия МГТУ «МАМИ» № 2(8), 2009.

Рис. 2. К определению сил, действующих на скругленной части режущей кромки Доля давления резания, подводимая через скругленную кромку, по определению равна:

цоля давления резания, подводимая через скругленную кромку, по определению равна

$$\Delta q_{Zr} = \frac{\Delta P_{zr}}{\sigma St} \tag{37}$$

С учетом (35) для общего случая можно записать:

$$\Delta q_{Zr} = \frac{\sum l_i r_i}{St} \frac{1}{(1 - 1.36\,\mu)} \int_0^\theta (1 + \theta) \frac{\sin(\theta + \rho)}{\cos\rho} \theta d\theta \qquad (38)$$

где: r_i – радиус скругления режущей кромки.

В случае резания проходным токарным резцом длины проекций активных частей режущих кромок на основную плоскость равны:

$$l_1 + l_2 = \frac{t}{\sin\phi} + \frac{S}{\sin\phi 1(Ctg\,\phi + Ctg\,\phi 1)},\tag{39}$$

где: $\phi_{\rm u} \phi_{\rm l} - _{\rm главный и вспомогательный углы в плане.$

Кроме скругления на задних поверхностях имеются плоские участки, давление на которых оцениваем по уравнению (30). На плоском участке угол $\theta = 0$, поэтому давление определяется уравнением:

$$\Delta q_3^n = \frac{1 + \frac{\pi}{2}}{1 - 1.36\,\mu} \tag{40}$$

Соответствующая сила трения очевидно равна:

$$T_3 = \mu \cdot \sigma \cdot \Delta q_3^n \cdot f_3, \tag{41}$$

где: T_3 – сила трения; f_3 – суммарная площадь плоских участков задней поверхности. Подставляя эту величину в выражение (63), получаем:

$$\Delta q_3^{\mu} = \mu (1 + \frac{\pi}{2}) \frac{l_1 h_1 + l_2 h_2}{St(1 - 1.36\mu)}$$
(42)

Полное давление при резании инструментом со скругленной режущей кромкой, очевидно, равно сумме долей давления, связанных со стружкообразованием и с выглаживанием:

$$q = q_1 + q_2 \tag{43}$$

В развернутом виде уравнение содержит неизвестные параметры оптимизации: относи-

тельную скорость схода стружки ς_1 и угол контакта θ_2 . По сути своей это функционал, экстремалями которого являются эти параметры.

Рис. 3. Расчетные кривые изменения долей давления резания в зависимости от угла \mathcal{G} $0 \le \theta \le \frac{\pi}{2}$

На рис. 3 приведены кривые изменения этих составляющих, полученные в результате расчетов в среде MathCad.

С увеличением угла контакта θ (горизонтальная ось) доля давления, связанного со стружкообразованием q_1 , уменьшается, а доля, связанная с выглаживанием q_2 , возрастает. При этом на результирующей кривой полного давления резания q имеется так называемый «сильный минимум», то есть единственный в интересующей нас области. Это говорит о том, что предлагаемая аналитическая модель процесса резания достаточно адекватна и пригодна для практического использования.

Результаты некоторых поверочных расчетов приведены ниже.

1. Влияние главного переднего угла моделировалось при следующих условиях:

$$\phi = 45^{\circ}; \ \varphi_{1} = 5^{\circ}; \ \lambda = 6^{\circ}; \ t = 4_{\text{MM}}; \ S = 0.3_{\text{MM}}; \ r = 0.1_{\text{MM}}; \ h = 0.25_{\text{MM}}; \ h1 = 0.25_{\text{MM}}; \gamma = (-20^{\circ}... + 30^{\circ}); \ \sigma = 50_{\text{K}\Gamma\text{c/MM}^{2}}; \ B = 0.43; \ a_{n} = 6.0_{\text{K}\Gamma/\text{MM}}; \ \mu = 0.1_{\text{MM}}; \ \mu$$

									тиолици
γ^{o}	$ heta^o$	q_z	J	δ	P_z	P_y	P_x	ς_1	$\beta_1^{\ o}$
-20.0	34.7	3.701	0.916	0.018	133.2	52.1	48.4	0.755	27.8
-15.0	26.8	3.417	0.949	0.011	123.0	51.06	47.3	0.748	31.9
-10.0	19.6	3.169	0.973	0.006	114.1	50.16	46.4	0.744	34.9
-5.0	13.0	2.953	0.988	0.003	106.3	49.4	45.0	0.740	36.56
0.0	0.0	2.762	0.998	0.001	99.44	48.73	44.98	0.742	36.56
5.0	0.0	2.594	1.000	0.000	93.44	48.17	44.4	0.744	39.07
10.0	0.0	2.589	1.000	0.000	93.24	47.6	43.9	0.745	39.10
20.0	0.0	2.182	1.000	0.000	78.5	45.4	41.7	0.767	47.6
30.0	0.0	1.987	1.000	0.000	71.5	46.10	42.34	0.792	53.9

150Известия МГТУ «МАМИ» № 2(8), 2009.

Раздел 2. Технология машиностроения и материалы.

2. Влияние радиуса скругления режущей кромки исследовалось при условиях:											
$\phi = 45^{\circ}$; $\varphi_1 = 5^{\circ}$; $\lambda = 6^{\circ}$; $\gamma = -5.0^{\circ}$; $t = 4_{\text{MM}}$; $S = 0.3_{\text{MM}}$; $h = 0.25_{\text{MM}}$; $h1 = 0.25_{\text{MM}}$;											
$r = 0.030.25_{\text{MM}}$, $\sigma = 50_{\text{K}\Gamma\text{c/mm}2}$, $B = 0.43_{\pm}a_n = 6.0_{\text{K}\Gamma/\text{MM}}$, $\mu = 0.1_{\pm}$											
			,		,	,		,	Таблица 2		
r	$ heta^o$	q_z	J	δ	P_z	P_y	P_x	ς_1	$\beta_1^{\ o}$		
0.03	0.0	2.996	1.00	0.000	107.9	49.27	45.55	0.742	33.7		
0.06	0.0	2.996	1.00	0.000	107.9	49.43	45.7	0.742	33.7		
0.10	13.0	2.993	0.988	0.003	107.6	49.45	45.75	0.742	33.7		
0.12	17.5	2.988	0.974	0.006	107.4	49.63	45.8	0.742	33.7		
0.15	19.94	2.978	0.958	0.009	107.2	49.75	45.9	0.742	33.7		
0.20	21.9	2.962	0.932	0.015	106.6	49.86	46.07	0.742	33.7		
0.25	23.07	2.944	0.906	0.023	106.0	50.0	46.21	0.742	33.7		
				n							

Заключение

Предложеная модель процесса резания, рассматривающая резание как совокупность двух непрерывно протекающих актов пластического деформирования упрочняемого материала: стружкообразования и выглаживания, обеспечивает аналитическое исследование косого резания инструментом с притупленной режущей кромкой как достаточно общего случая резания.

На этой основе с использованием энергетического метода анализа выведены уравнения, необходимые для прогноза скорости схода и деформации в стружке, а также для оценки реализуемой толщины срезаемого слоя, натяга в зоне выглаживания и упрочнения приповерхностного слоя.

Выведены базовые физические уравнения для оценки давления на площадках контакта по передней и задней поверхностям инструмента с учетом контактного трения, а также всех геометрических параметров и микрогеометрии инструмента. Это позволяет рекомендовать их в качестве основы расчетных методик, используемых для проектирования технологии и конструирования нового о инструмента, в том числе с неперетачиваемыми твердосплавными пластинками.

Литература.

- 1. Оленин Л.Д.. Анализ механики процесса резания. 1. Стружкообразование. Известия .МГТУ «МАМИ», 2008, с. 183-189.
- Оленин Л.Д. О контактных напряжениях при внедрении плоского и скругленного пуансонов в полупространство. Материалы международного научного симпозиума. МГТУ «МАМИ», 2005г Секция 7. с. 46-52.

Характеристики зон захвата ферропримесей в магнитных очистных аппаратах

к.т.н. доц. Сандуляк А.А., Полисмакова М.Н., к.т.н. Ершова В.А., д.т.н. проф. Сандуляк А.В., Ершов Д.В. МГТУ «МАМИ»

1. Решетчатый аппарат – с противостоящими магнитными элементами

Аппараты такого типа состоят из «плоских магнитных стержней», образующих своеобразную решетку-ловушку с достаточно сильным полем в рабочих зазорах (для прохождения рабочей среды) между стержнями [1-3]. Сами стержни представляют собой профильные или частично сплющенные круглые трубки с размещенными в них постоянными магнитами, каждый из которых является источником магнитного поля. А пара противостоящих магнитных элементов, взаимопроникающие магнитные поля которых усиливают друг друга, собственно,