ний (СИ), их амортизацию, поверку (калибровку), разработку новых СИ и их испытания (сертификацию) в целях утверждения типа (C_{CH}), стоимость измерительных операций ($C_{O\Pi}$), потери от неточности результатов (C_{Λ}) измерений и $\sum C_i$.

Оценить расходы С_{кк} можно следующим образом:

$$C_{\rm KK} = C_{\rm CH} + C_{\rm OII} + C_{\rm A} + \sum C_i$$

Расходы, связанные с контролем технологических процессов, можно оценить аналогично, но значения составляющих этих расходов определяются не для изделий, а для технологических процессов их изготовления.

На этапе эксплуатации расходы на метрологическое обеспечение C_{IV} обусловливаются, главным образом, затратами на поддержание технического состояния СИ, встроенных в объект (C_{B}) и средств измерений, используемых для проверки и поверки этих встроенных СИ ($C_{\Pi P}$).

$$C_{\rm IV} = C_{\rm B} + C_{\rm IIP}.$$

Расходы на метрологическое обеспечение утилизации в основном определяются расходами на контроль технологических процессов $C_{\Pi\Pi}$.

$$C_{\rm V} = C_{\Pi\Pi}$$
.

Таким образом, расходы на метрологическое обеспечение изделий в процессе всего его жизненного цикла $C_{\text{жц}}$ можно оценить как сумму расходов на метрологическое обеспечение каждого из этапов следующим образом:

$$C_{\text{жц}} = C_{\text{I}} + C_{\text{II}} + C_{\text{III}} + C_{\text{IV}} + C_{\text{V}},$$

где: C₁, C₁₁, C₁₁₁, C₁₁₂, C₁₂, C₁₂, - расходы на метрологическое обеспечение первого, второго, третьего, четвертого и пятого этапов соответственно.

Выводы.

Разработана общая методика оценки расходов на метрологическое обеспечение изделий на всех этапах их жизненного цикла.

Приведенные формулы позволяют оценить общую стоимость метрологических работ, выполняемых при метрологическом обеспечении и расходы на конкретные работы с учетом стоимости примененных средств измерения и контроля, а также испытательного оборудования в конкретных организациях или промышленных предприятиях.

Литература.

- 1. Грибанов Д.Д. Конспект лекций по курсу «Экономическая эффективность метрологического обеспечения». МГТУ «МАМИ», 2006 г.
- 2. Грибанов Д.Д., Зайцев С.А., Митрофанов А.В. Основы метрологии. МГТУ «МАМИ», 2002 г.
- 3. Сычев Е.И., Храменков В.Н., Шкитин А.Д. Основы метрологии военной техники. М: Военное издательство, 1993 г.

Силовые характеристики рабочей зоны модуля сепаратора с противостоящими магнитами

Ершова В.А., к.т.н., доц. Сандуляк А.А., д.т.н., проф. Сандуляк А.В., Крылов В.А., Пугачева М.Н. МГТУ «МАМИ»

Предложен метод, позволяющий оперативно и достоверно определять силу магнитного притяжения (захвата) частицы в любой точке исследуемой области магнитного воздействия. На основании проведенных измерений показано, что в пороговой зоне (в окрестности кромок магнитов) поле гораздо более неоднородно, чем в «теневой» зоне, параллельно оценена провальная зона зазора, составляющая 20-30%. В результате многочисленных измерений силы притяжения феррочастицшаров различных диаметров в пороговой зоне определено одно из базовых выражений для ее определения для различных зазоров с точностью до размерного параметра. Дополнительно проведен комплекс исследований и получено базовое выражение для определения силы захвата феррочастиц несферической формы.

Из многочисленных параметров, которые дают ту или иную характеристику рабочих зон магнитного сепаратора, а, в конечном счете, информацию о работоспособности самого сепаратора, действительно ключевым (итоговым) параметром является сила магнитного притяжения (захвата) феррочастицы, находящейся в условиях воздействия создаваемого в сепараторе магнитного поля.

Наиболее предпочтительными в этом плане были бы, конечно же, ее прямые замеры. Но их реализация, особенно при желании провести оперативные исследования в объективно ограниченной области магнитного воздействия, вызывает определенные трудности, в том числе связанные с необходимостью строгого позиционирования «пробных» зондовферрочастиц и миниатюризацией измерительных систем.

Хорошим приближением к решению задачи получения достаточно достоверных (практически прямых и, к тому же оперативных) данных этой силы является подход, суть которого заключается в следующем.

Зонд-феррочастица помещается в специальную каретку с плоским основанием, сопрягающимся с позиционной плоскостью (площадкой). Вся эта система помещается в исследуемое магнитное поле и осуществляется принудительное протягивание каретки, например, параллельно полюсной плоскости магнита (т.е. в наиболее привычном направлении потока очищаемой среды) с одновременным измерением силы сопротивления этому протягиванию (динамометром). С учетом же коэффициента трения эта измеряемая сила (сила трения при принудительном скольжении каретки по площадке) и позволяет находить искомую силу магнитного притяжения феррочастицы, причем в любой точке исследуемой области магнитного воздействия.

При проведении опытов использовался модуль сепаратора с противостоящими магнитами. Высокоэнергетичные магниты Nd-Fe-B диаметром 25 мм и толщиной 10 мм располагались на расстоянии b друг от друга, перемещение зонда-феррочастицы (например, шара диаметром d) осуществлялось в радиальном направлении r магнита параллельно поверхности магнитов на расстоянии x от поверхности одного из магнитов.

Уже первые опыты показали необходимость в фиксировании как минимум двух существенно отличающихся друг от друга магнитных сил притяжения феррочастицы.

Во-первых, это сила $F_{\rm B}$ внутри области (в центре «теневой» зоны) между противостоящими магнитами, где поле наиболее интенсивно (по индукции или напряженности) и где, на первый взгляд, должна как бы локализоваться основная силовая зона захвата. Во-вторых, это сила $F_{\rm II}$ на входе или выходе (в пороговой зоне) области между противостоящими магнитами.

Фактически именно пороговые зоны в смысле силового воздействия на феррочастицы выделяются особо. Так, из-за того, что магниты имеют прямоугольные кромки, поле в окрестности этих кромок гораздо более неоднородно, а стало быть, характеризуется повышенным силовым фактором и соответственно повышенной силой магнитного притяжения.

На рис. 1 показаны многочисленные данные магнитных сил притяжения $F_{\rm B}$ и $F_{\rm n}$ феррочастиц-шаров различного диаметра *d* (от 6 до 10 мм). Их удаленность по отношению к одной из поверхностей противостоящих магнитов (они находились здесь друг от друга на расстоянии *b* = 25 мм) составляла от *x* = 4,25...6,25 мм до *x* = 12 мм.

Предварительный, чисто качественный анализ семейств нелинейных характеристик магнитной силы притяжения (рис. 1) позволяет отметить следующее.

Так, сила притяжения феррочастицы интенсивно убывает при ее удалении x от поверхности магнита и не менее интенсивно – при уменьшении диаметра d феррочастицы. При этом сила магнитного притяжения $F_{\rm n}$ в пороговой зоне существенно (здесь – в 4-5 раз и бо-

лее) превышает силу магнитного притяжения *F*_в в теневой зоне.

Весьма примечательным является и то, что в теневой зоне сила магнитного притяжения практически исчезает на расстоянии от поверхности магнита x = 9-10 мм (рис. 1 б), т.е. на расстоянии, составляющем 70-80% величины полузазора между магнитами (b/2 = 12,5 мм). Остальные же 20-30% полузазора (а ввиду симметричности соответствующих характеристик – и зазора в целом) являются совершенно провальными с точки зрения магнитного силового воздействия (рис. 1 б) на феррочастицы.

Рис. 1. Зависимость магнитной силы притяжения феррочастицы в пороговой (а) и теневой (б) зонах от удаленности феррочастицы-шара по отношению к полюсной плоскости одного из противостоящих магнитов (*b* = 25 мм):

1 - d = 10 MM, 2 - d = 9 MM, 3 - d = 8 MM, 4 - d = 6 MM.

И это обусловлено отнюдь не отсутствием поля в этой центральной части теневой зоны. При реально существующем (хотя и ослабленном) там поле с определенной индукцией В такой, практически нулевой, результат означает одно: неоднородность поля (gradB) и силовой фактор (B·gradB) здесь, т.е. в окрестности минимума зависимости В от х, исчезающее малы. Кстати, это подтверждается специальными исследованиями с получением экспериментальных зависимостей В от x (миллитесламетром, снабженным датчиком Холла) и вытекающих из них зависимостей dB/dx и $B \cdot dB/dx$ от x.

Что касается количественного анализа полученных семейств нелинейных характеристик магнитной силы притяжения (рис. 1), то неплохие результаты дает представление соответствующих опытных данных в логарифмических координатах, в которых они линеаризуются, указывая тем самым на возможность их представления в степенном виде.

В частности, для более неоднородной, а потому более активной, пороговой зоны области магнитного воздействия сила притяжения феррочастиц F_{π} является достаточно сильной степенной функцией удаленности x феррочастицы от «основания» пороговой зоны (полюсной поверхности магнита), здесь – расстояния между феррочастицей и кромкой полюсной поверхности. Так, $F_{\pi} \sim 1/x^{1.8...2}$, что достаточно близко к классической обратной квадратичной зависимости.

Другими словами, налицо явное сходство характера полученного силового взаимодействия «источника» неоднородного магнитного поля и феррочастицы (близкого к $F_{\rm n} \sim 1/x^2$) с классическим фундаментальным характером (обратный квадратичный) силового гравитационного взаимодействия масс или электрического взаимодействия зарядов.

Классически ведет себя поле пороговой зоны также и по отношению к такому параметру, как размер феррочастицы d (рис. 1). Легко показать (рис. 1), что связь F_{π} и d близка к кубической, но именно $F_{\pi} \sim d^3$, т.е. по существу $F_{\pi} \sim w$, где w – объем феррочастицы. Это полностью согласуется не только с известным выражением для силы магнитного воздействия на «точечную» феррочастицу, а и с фундаментальным законом гравитационного взаимодействия масс, учитывая, что $w \sim m$, где m – масса феррочастицы.

Для менее активной, теневой зоны (рис. 1 б), за исключением весьма низких, предпровальных данных, наблюдается более сильная (чем квадратичная) связь данных магнитной силы притяжения $F_{\rm B}$ с удаленностью феррочастицы $x: F_{\rm B} \sim 1/x^{3...3,5}$. Более сильной (чем кубическая) оказывается здесь также связь $F_{\rm B}$ и $d: F_{\rm B} \sim d^{5...5,5}$. Все это обусловлено, по всей видимости, ролью самой феррочастицы как ферромагнетика, вносящего здесь бо́льшее возмущение в менее неоднородное магнитное поле.

Основываясь на полученных и проанализированных здесь данных (рис. 1), можно записать одно из базовых выражений для силы магнитного притяжения феррочастицы:

$$F_n = F = A_b \frac{d^3}{x^2} = 0.81 \frac{d^3}{x^2} \tag{1}$$

При этом специально оговорим, что для принятых условий эксперимента (напомним, здесь b = 25 мм) размерный параметр A_b составляет $A_b = 0,81$ Н/мм.

Все сказанное выше является лишь частным случаем исполнения магнитного сепаратора – с вполне определенным расстоянием между противостоящими магнитами (b = 25 мм). Между тем, в сепараторах подобного модельного ряда это расстояние b может быть различным: при очистке сыпучей среды оно задается в зависимости от поперечного размера и формы ее элементов, например, гранул, зерен, фрагментов дробления различных материалов, их склонностью к комкованию и пр.

Полученные при b = 33 мм данные магнитной силы притяжения, как и в случае с b = 25 мм (рис. 1), были подвергнуты соответствующей обработке. Она указывает на тот же функциональный (как и ранее – степенной) характер силы магнитного притяжения феррочастицы в пороговой и теневой зонах. При этом сохраняются почти такие же (особенно для несколько суженных диапазонов x и d) индивидуальные значения показателей степеней при x и d: $F_{\rm II} \sim 1/x^{2...2,3}$, $F_{\rm III} \sim d^{3...3,3}$, $F_{\rm IIII} \sim 1/x^{2...5,5}$.

И, опять-таки, если ориентироваться на пороговую зону, как намного более сильную, а, в конечном счете, определяющую итоговый результат очистки, то для этой зоны количественная связь принимает вид:

$$F_n = F \cong A_b \frac{d^3}{x^2} = 0.61 \frac{d^3}{x^2}$$
(2)

причем здесь тоже специально оговорим, что для этих условий (b = 33 мм) размерный параметр A_b составляет $A_b = 0,61$ H/мм.

В связи с тем, что параметр A_b принимает индивидуальное значение при определенном значении взаимного расположения магнитов b, представляется важным найти функциональную связь между параметрами A_b и b. Для этого не обязательно приводить весь комплекс описанных выше экспериментов, вполне достаточно ограничиться исследованиями с использованием шара одного диаметра, например d = 8 мм, изучая характер зависимостей $F_{\rm n}$ от x при различных b. Зависимость заимствованных и дополнительно найденных значений параметра A_b оказалась близкой к степенной:

$$A_{b} = A / x = 20,3 / x$$
.

Тогда выражения (1) и (2) с точностью до размерного параметра A (для исследуемого модуля A = 20,3 H) обобщаются единой функциональной зависимостью:

$$F_n = A \frac{d^3}{b \cdot x^2} = 20.3 \frac{d^3}{b \cdot x^2}$$
(3)

которую можно использовать для определения силы магнитного притяжения феррочастицы при известных (установленных) параметрах рабочей зоны сепаратора или, наоборот, определения (выбора) параметров рабочей зоны при заданной силе магнитного притяжения феррочастицы.

Вопрос о применимости формулы (3), полученной для ферровключений-шаров, к ферровключениям неправильной формы заслуживает особого внимания.

В качестве исследуемых ферровключений неправильной формы выбраны болт и гайка, их эквивалентные диаметры составляли соответственно 7,7 мм и 7,2 мм. Выбор именно таких ферротел не случаен: подобные ферровключения нередко встречаются в составе уловленных магнитным сепаратором феррочастиц – как элементов и фрагментов крепежа после проведения ремонтных работ оборудования.

Результаты измерений магнитной силы притяжения таких ферротел, как болт и гайка, в пороговой зоне показали, что в наиболее интересующей нас пороговой (высокоградиентной) зоне зависимости В от *x*, сохраняясь традиционно сходными с соответствующими зависимостями для шаров, тем не менее, располагаются выше модельных зависимостей, отличаясь от них примерно одинаковым коэффициентом $k_{\phi} \cong 1,1-1,2$.

Следовательно, для феррочастиц несферической формы вполне применима полученная формула (3), но с учетом поправочного коэффициента-множителя $k_{\phi} \cong 1,15$:

$$F_n = A \frac{d^3}{b \cdot x^2} = 23.3 \frac{d^3}{b \cdot x^2}$$
(4)

которая может использоваться для решения прямых и обратных задач магнитной сепарации.

Работа выполнена при поддержке Гранта Президента Российской Федерации для молодых ученых – кандидатов наук и их научных руководителей (МК-115.2007.08).

Выводы

Получено базовое выражение для определения силы притяжения феррочастиц-шаров различных диаметров в пороговой зоне с точностью до размерного параметра. Получено базовое выражение для определения силы захвата феррочастиц несферической формы.

Характер силового фактора между противостоящими магнитами сепаратора с плоскими стержнями

Ершова В.А., д.т.н., проф. Нюнин Б.Н., к.т.н., доц. Сандуляк А.А., д.т.н.. проф. Сандуляк А.В., Пугачева М.Н. *МГТУ «МАМИ»*

На основании измерений магнитной индукции в модульном блоке, состоящем из двух противостоящих магнитов, показано, что, во-первых, индукция поля достигает своего минимального значения посредине зазора блока, и, во-вторых, с уменьшением величины самого зазора общий уровень поля повышается. На основании найденных соответствующих зависимостей градиента индукции и силового фактора показано, что их хвостовые участки (порядка 23-27% от величины зазора) сходят на нет, а значения индукции на этих хвостовых участках становятся почти автомодельными, что свидетельствует о наличии провальной зоны между противостоящими магнитами модуля. В результате анализа ферропримесей рабочих сред, как опасного фактора энергообъектов, найдена зависимость для оценки финансового эквивалента снижения риска для энергетических объектов.

В работах [1, 2] с использованием модульного блока, т.е. двух противостоящих (в опытах – параллельно смещаемых относительно друг друга) магнитов проведена оценка характера изменения этой индукции В между ними по мере перемещения измерительного датчика (Холла) вдоль нормального к поверхностям магнитов направления *х*. При этом были получены экстремальные характеристики В (с минимумом посредине зазора и максимумом на поверхности магнитов), а для случая взаимного сближения противостоящих магнитных элементов отмечены их некоторое сглаживание и рост общего уровня В (за счет суперпозиции полей этих элементов).

Однако индукция В (или напряженность $H = B/\mu_0\mu$, где $\mu_0 = 4\pi \cdot 10^{-7}$ Гн/м – магнитная