$$A \cong \int_{x=x_0}^{x=\delta/2} F \cdot dx, \qquad (2)$$

где пределами интегрирования являются первоначальная удаленность феррочастицы $x=x_0$ (по удаленности ее первоначальной траектории к поверхности магнита) и конечное положение ($x=\delta/2$) уже осажденной частицы.

Рис. 3. Иллюстрация дрейфа и захвата феррочастицы 1 магнитным элементом 2; 3 и 4 – первоначальная и фактическая (в зоне магнитного воздействия) траектория феррочастицы.

Работа выполнена при поддержке Гранта Президента Российской Федерации для молодых ученых – кандидатов наук и их научных руководителей (МК-115.2007.08).

Выводы

Разработан и реализован новый метод определения силовых характеристик рабочей зоны очистного аппарата, основанный на принудительном дрейфе феррочастицы по дистанционно позиционируемой площадке сквозь эту зону (с последующим вычислением нормальной составляющей силы захвата).

Литература

1. Сандуляк А.В. Магнитно-фильтрационная очистка жидкостей и газов. М.: Химия, 1988, 133с.

Явление поканального намагничивания гранулированной среды: радиальный (пиковый) профиль проницаемости «элементарного» канала

д.т.н., проф. Сандуляк А.В., к.т.н., доц. Сандуляк А.А., Ершова В.А. *МГТУ «МАМИ»*

На основании оригинальных представлений о поканальном намагничивании «плотно упакованной» гранулированной среды экспериментально и теоретически изучены закономерности намагничивания квазисплошных сердцевин «элементарного» эффективного канала намагничивания цепочки шаров и его любых «слоевтрубок». Установлен вид радиального профиля магнитной проницаемости канала намагничивания.

1. Среда с контактирующими гранулами как жгут «магнитно-профильных» каналов

Ключевой особенностью всех «плотно упакованных» гранулированных сред (с контактирующими между собой гранулами-зернами), позволяющей сравнительно просто детализировать и, к тому же, – углубить традиционно «конечную» задачу объемного усреднения, является то, что при намагничивании таких сред отчетливо проявляется обнаруженное ранее явление так называемого поканального намагничивания [1-4].

Так, гранулированная среда, как специфичный магнетик, намагничивается селективно, избирательно, по эффективным «элементарным» каналам, сообразно направлению намагничивания, в котором среди множества гранул-звеньев разветвленной скелетной структуры гранулированной среды всегда реально существуют соответствующие (этому направлению)

прямые или извилистые цепочки гранул [1-4].

Таким образом, с точки зрения особенностей намагничивания гранулированная среда с плотно упакованными ферромагнитными гранулами представляет собой своеобразный жгут эффективных «элементарных» каналов, пронизывающих гранулированную среду вдоль направления намагничивания [1-4]. Это первое.

Второе. Каждый из эффективных элементарных каналов намагничивания, хотя и может характеризоваться усредненными значениями магнитной индукции B и проницаемости μ [1], тем не менее, имеет сильно выраженное «неравнозначное» поперечное сечение, а именно сечение с угасающей, ослабляющейся возможностью «проводить» магнитный микропоток по мере радиального утолщения сердцевины канала (расширения в радиальном, периферийном направлении).

Это связано с тем, что магнитное сопротивление каждого из квазисплошных трубчатых слоев элементарного канала в поперечном сечении канала (рис.1) явно неодинаково (здесь и далее имеется в виду магнитное сопротивление в его классическом определении, а не в используемой часто трактовке как относительное изменение электросопротивления в условиях магнитного воздействия). Так, по мере радиального расширения поперечного сечения изучаемой сердцевины канала и соответствующего увеличения радиуса «прирастаемого» рубчатого слоя это сопротивление возрастает из-за увеличивающейся поровой прослойки между смежными гранулами-звеньями (в рабочей цепочке контактирующих гранул). Как следствие, уменьшается средняя проницаемость «слоев-трубок», а, стало быть, – уменьшается их способность к «проводимости» магнитного микропотока.

Рис. 1. Межцентровый модуль цепочки шаров с выделенной элементарной трубкой эффективного канала намагничивания (*a*) и иллюстрация пикового характера радиальной магнитной проницаемости (б) квазисплошного канала намагничивания в его поперечном сечении.

Если в эффективном канале намагничивания цепочки шаров, состоящем как бы из множества концентричных «слоев-трубок», условно выделить одну трубку (рис.1*a*) произвольного радиуса *r* и считать ее квазисплошной однородной по длине, то можно ввести такую новую характеристику как магнитная проницаемость $\tilde{\mu}$ тонкой трубки. Естественно, трубки различного радиуса *r* будут характеризоваться различной проницаемостью $\tilde{\mu}$ (из-за переменной толщины поровой прослойки между шарами), увеличивающейся при приближении к оси канала и уменьшающейся при удалении от нее (рис. 1*б*). Это и обусловливает наличие радиального, «пикового» по форме профиля $\tilde{\mu}$ (и соответствующей индукции) для эффективного канала в целом (по формальной аналогии, например, с профилем скорости жидкости при ее течении в трубе¹).

¹ Формальным «скоростным» аналогом здесь является, конечно же, магнитная индукция (магнитный поток, приходящийся на единицу площади). А что касается магнитной проницаемости как индукции, отнесенной к произведению $\mu_0 H$ (где μ_0 – абсолютная магнитная проницаемость вакуума, H – напряженность намагничивающего поля), то такое сравнение имеет смысл с точностью до множителя $1/\mu_0 H$.

²²²Известия МГТУ «МАМИ» № 2(4), 2007.

Фигурирующие здесь и далее специально введенные новые понятия, такие как средняя проницаемость «слоев-трубок» канала намагничивания, его сердцевины (и связанные с ними характеристики средней индукции в «слоях-трубках» и сердцевине) поддаются соответствующему экспериментальному и теоретическому анализу.

2. Опытные «внутриканальные» данные магнитного микропотока, средней индукции и проницаемости

Сердцевина эффективного канала намагничивания цепочки шаров. Если взять достаточно длинную, самодостаточную для минимизации размагничивающего фактора, цепочку шаров (как показывают опыты – с числом шаров не менее 8-10), намагничиваемую в длинном соленоиде, то с помощью потокоизмерительных петель того или иного радиуса r, помещенных в середине этой цепочки между смежными шарами радиуса² R [2-4], можно получить данные соответствующего магнитного микропотока Φ (рис. 2a). Они являются базовыми для расчета средней индукции B в сердцевине определенного радиуса r (относительного радиуса r/R) и магнитной проницаемости³ μ ($\langle \tilde{\mu} \rangle$) этой сердцевины (рис. 3).

Кроме полученных полевых зависимостей индукции *B* и проницаемости $\langle \tilde{\mu} \rangle$ для различных (по радиусу *r*) сердцевин (рис. 3, линии *1-4*), соответствующий интерес представляют также полевые зависимости индукции и проницаемости для гранулированной средызасыпки шаров (рис. 3, линии 5), а также для материала, близкого к материалу шаров – слаболегированной стали⁴ (рис. 3, линия 6). Так, наглядно прослеживается вполне ожидаемый факт: кривые *B* ($\langle \tilde{\mu} \rangle$) для сердцевин канала намагничивания как бы заполняют довольно общирную «вакантную» область между кривыми *B* (μ) для материала шаров и полишаровой среды. При этом с увеличением относительного радиуса сердцевины *r/R* кривые индукции и проницаемости становятся сходными с соответствующими кривыми для полишаровой среды, поскольку увеличенная (по радиусу) сердцевина все более воспроизводит полишаровую

среду. А с уменьшением *r/R* эти кривые приближаются к соответствующим кривым для сплошного металла, так как для все более тонкой сердцевины поровая прослойка между гранулами уменьшается: в пределе – до нуля. *Концентричные «слои-трубки» эффективного канала намагничивания цепочки шаров.*

Зкспериментальные данные микропотоков Φ (рис. 2*a*) позволяют получить не только полевые зависимости индукции *B* и проницаемости $\langle \tilde{\mu} \rangle$ в целом для той или иной сердцевины эффективного канала намагничивания (рис.3). Они дают возможность найти также показанные на рис. 4 «послойные» полевые зависимости *B* и µ ($\tilde{\mu}$), которые характеризуют локальный (соответствующий определенному относительному радиусу *r/R* «слоя-трубки») уровень или потенциальный уровень намагничивания эффективного канала. Именно такие, локальные данные индукции *B* и проницаемости µ (далее используется введенное ранее обозначение $\tilde{\mu}$) на том или ином удалении⁵ *r/R* от оси эффективного канала намагничивания, как уже оговорено, отражают весьма важное свойство самого канала – радиальный профиль уровня (по-

² Из-за ограниченных размеров межшаровой поровой прослойки целесообразно использовать шары повышенного радиуса, например R = 16,65 мм [2-4].

³ Здесь и далее преимущественно используется обоснованное ниже отличительное обозначение магнитной проницаемости квазисплошной сердцевины эффективного канала намагничивания: (μ) (как результат усреднения

радиального профиля магнитной проницаемости $\tilde{\mu}$ эффективного канала намагничивания).

⁴ Следует особо оговорить, что изготовить для получения данных *B* и μ такой адекватный «контрольный» сплошной образец, который в точности воспроизводил бы чередование реальных незакаленных и закаленных участков (как в шарах), невозможно. Вместе с тем, заимствованная из [5] кривая для *B* (рис.3, линия *6*), хотя и является лишь некоторым приближением к интересующей нас специфичной кривой, тем не менее, — более точным по сравнению с другими данными, получаемыми, в частности, для тонкого образца после его механической обработки или отжига.

⁵ При этом следует различать, что, несмотря на формальное сходство, здесь параметр *r/R* характеризует не относительный радиус сердцевины-магнетика, как это было ранее, а средний относительный радиус слоя-трубки эффективного канала намагничивания, в том числе минимальной в опытах трубки (рис.4) с нулевым внутренним радиусом.

тенциального уровня) его намагничивания. В частности, как это косвенно следует из расслаивающегося по r/R семейства кривых B и $\tilde{\mu}$ (рис. 4), а также будет более детально показано ниже, значения B и $\tilde{\mu}$ для эффективного канала намагничивания убывают по мере увеличения r/R.

Рис. 2. Магнитный микропоток в сердцевине различного сечения (относительного радиуса) эффективного канала намагничивания цепочки шаров (*a*) и обобщение преобразованного вида этих данных (б) в координатах согласно аналитическому выражению (8), *1 – H*=18 кА/м, *2 –*36, *3 –* 70, *4 –* 105, *5 –* 140, *6 –* 175.

3. «Трубки» канала намагничивания: радиальный профиль проницаемости (расчет и эксперимент)

Если для упрощения считать, что «слои-трубки» эффективного канала намагничивания имеют форму, близкую к цилиндрической⁶ (рис. 1*a*), то задача о профиле проницаемости $\tilde{\mu}$ становится легко решаемой.

Для этого, во-первых, из бесчисленного множества тонких концентричных «слоев-трубок» эффективного канала намагничивания, во-первых, следует выделить одну «трубку» (рис. 1a) радиусом r и малым сечением \tilde{s} , уподобив ее такой квазисплошной однородной (вдоль дли-

⁶ В поровой прослойке между смежными шарами, особенно при повышенных значениях г/R, конечно же, имеет место «бочкообразный» ход магнитных силовых линий (рис.1а), к которым вектор индукции касателен (он, как это понятно, изменяется не только по направлению, но и по величине). Что же касается числовых значений индукции, то на выходе магнитных линий из определенных точек шара, находящихся на удалении г от оси канала (рис.1а), они практически соответствуют числовым значениям индукции на таком же удалении посредине поровой прослойки. И в этом смысле «форма» канала намагничивания действительно близка к цилиндрической.

ны) трубке, магнитное сопротивление которой эквивалентно суммарному сопротивлению соответствующих реальных участков. Магнитные же сопротивления квазисплошной трубки, участка реальной трубки в теле смежных шаров и участка этой трубки между шарами составляют соответственно $2R/\mu_0 \tilde{\mu} \tilde{s}$, $(2R-l)/\mu_0 \mu \tilde{s}$ и $l/\mu_0 \tilde{s}$, где l – длина трубки между поверхностями смежных шаров (рис. 1*a*). Во-вторых, необходимо принять к сведению чисто геометрическую связь (рис. 1*a*): $l/2R=1-[1-(r/R)^2]^{0.5}$.

Рис. 3. Полевые характеристики средней индукции (*a*) в сердцевине радиуса *r* эффективного канала намагничивания и средней проницаемости (*б*) этой сердцевины (*1 – r/R*=0,17, *2* –0,42, *3* –0,59, *4* –0,87), здесь же – соответствующие зависимости для полишаровой среды (*5*) и низколегированной стали (*6*).

Тогда простые преобразования дадут выражение, отражающее закономерность изменения магнитной проницаемости квазисплошного эффективного канала намагничивания⁷ в его радиальном направлении:

$$\widetilde{\mu} = \frac{\mu}{\mu - \sqrt{1 - (r/R)^2} (\mu - 1)},$$
(1)

или, другими словами, выражение для радиального профиля магнитной проницаемости этого канала.

На рис. 5*а* показаны расчетные данные $\tilde{\mu}$ (*линии*), полученные по формуле (1), и экспериментальные данные $\tilde{\mu}$ (*точки*), заимствованные из рис. 4*б*. Видно, что соответствующие

⁷ Выражение для $\tilde{\mu}$ по сути решает еще одну принципиальную, обычно труднорешаемую, задачу гранулированной среды: по сути оно представляет собой выражение для относительной локальной напряженности поля в поровой прослойке между гранулами, а именно $h/H = \tilde{\mu}$. Это, в частности, вытекает из тождественных выражений для магнитной индукции: в квазисплошной трубке как $B = \mu_0 \tilde{\mu} H u$ поровой прослойке как $B = \mu_0 h$.

расчетные и экспериментальные данные µ хорошо согласуются между собой.

Рис. 5. Радиальный профиль магнитной проницаемости квазисплошного эффективного канала намагничивания (*a*) и средняя проницаемость сердцевины (определенного радиуса) этого канала (*б*): 1 – H=18 кА/м, 2 – 36, 3 - 70, 4 - 105, 5 - 140, 6 – 175; точки – экспериментальные данные (рис. 3*б* и рис. 4*б*), линии – расчет по формулам (1) и (4).

226Известия МГТУ «МАМИ» № 2(4), 2007.

Величину *l* для упрощения можно выразить также через расстояние r* от точки контакта шаров до точки пересечения трубки с поверхностью шара (рис. 1*a*), т.е. $l=r*^2/R$, а для сравнительно небольших *r* зачастую удобно принять, что $r* \cong r$. Тогда последует альтернативный формуле (1), несколько упрощенный, вариант выражения для радиального профиля магнитной проницаемости эффективного канала намагничивания:

$$\widetilde{\mu} \simeq \frac{\mu}{1+0.5(r/R)^2(\mu-1)}.$$
(2)

Значения $\tilde{\mu}$, подсчитанные по формулам (1) и (2), близки, особенно при $r/R \le 0,5$, когда их различие не превышает 3-6%.

4. Средняя проницаемость сердцевины канала намагничивания (расчет и эксперимент)

Средняя магнитная проницаемость $\langle \tilde{\mu} \rangle$ сердцевины произвольного радиуса *r* эффективного канала намагничивания легко находится путем типичного для подобных случаев усреднения, в данном случае – усреднения локальных значений магнитной проницаемости $\tilde{\mu}$, т.е.:

$$\left\langle \widetilde{\mu} \right\rangle = \frac{2}{r^2} \int_0^r \widetilde{\mu} r dr, \quad \Phi = \mu_0 \left\langle \widetilde{\mu} \right\rangle H \pi r^2, \quad \Phi = \mu_0 H 2 \pi \int_0^r \widetilde{\mu} r dr. \tag{3}$$

Здесь же записаны очевидные, частично исользуемые далее, независимые выражения для магнитного микропотока, которые и приводят к используемой формуле усреднения. После соответствующего интегрирования, с учетом выражения (1) для $\tilde{\mu}$, следует формула для определения магнитной проницаемости $\langle \tilde{\mu} \rangle$ определенной сердцевины, т.е. определенной внутренней части (радиуса *r*) эффективного канала намагничивания:

$$\left\langle \widetilde{\mu} \right\rangle = \frac{2\mu}{\left(r/R\right)^2 \left(\mu - 1\right)} \left\{ \frac{\mu}{\mu - 1} \ln \left[\mu - \left(\mu - 1\right) \sqrt{1 - \left(\frac{r}{R}\right)^2} \right] + \sqrt{1 - \left(\frac{r}{R}\right)^2} - 1 \right\}.$$
(4)

На рис.56 показаны расчетные данные $\langle \tilde{\mu} \rangle$ (*линии*), полученные по формуле (4), и экспериментальные данные $\langle \tilde{\mu} \rangle$ (*точки*), заимствованные из рис. 36. Видно, что соответствующие расчетные и экспериментальные данные $\langle \tilde{\mu} \rangle$, как и сравниваемые ранее данные $\tilde{\mu}$, хорошо согласуются между собой.

Аналогичное интегрирование можно осуществить также и с учетом упрощенного выражения (2) для $\tilde{\mu}$, это приводит к упрощенной формуле для $\langle \tilde{\mu} \rangle$:

$$\left\langle \widetilde{\mu} \right\rangle \cong \frac{2\mu}{\left(r/R\right)^2 \left(\mu - 1\right)} \ln \left[1 + \frac{1}{2} \left(\frac{r}{R}\right)^2 \left(\mu - 1\right) \right].$$
(5)

Значения $\langle \tilde{\mu} \rangle$, подсчитанные по формулам (4) и (5), подобно ранее сопоставляемым «профильным» значениям $\tilde{\mu}$, близки. Например, при r/R = 0,5 они различаются на 1-2% и даже при r/R = 1 – на величину до 7-9%. Это свидетельствует о возможности использования (где это оправдано) более простой формулы (5) в довольно широком диапазоне r/R.

Более того, при реально повышенных значениях магнитной проницаемости металла $\mu \ge 10-20$ формулу (5) можно еще более упростить, принимая $\mu \cong \mu$ -1, тогда

$$\langle \widetilde{\mu} \rangle \cong \frac{2}{\left(r/R\right)^2} \ln \left[1 + \frac{\mu}{2} \left(\frac{r}{R}\right)^2 \right].$$
 (6)

В этом случае значения $\langle \tilde{\mu} \rangle$, подсчитанные по оригинальной формуле (6) и модифицированной формуле (4), становятся весьма близкими и вплоть до предельных здесь опытных значений *r*/*R*=0,87 отличаются не более чем на 3-4%.

5. Обобщающее сравнение (единой зависимостью) расчетных и экспериментальных данных

С учетом второго из выражений (3) и полученной удобной упрощенной формулы (6)

можно записать также несколько упрощенное, но приемлемое для обобщения всех полученных первичных экспериментальных данных (рис.2*a*), выражение для магнитного микропотока в сердцевине канала:

$$\Phi \simeq 2\pi R^2 \mu_0 H \ln \left[1 + \frac{\mu}{2} \left(\frac{r}{R} \right)^2 \right].$$
⁽⁷⁾

Для проведения такого обобщения в виде единой зависимости последнее выражение целесообразно представить как:

$$\left[\frac{2}{\mu}\left(\exp\frac{\Phi}{2\pi R^2\mu_0 H}-1\right)\right]^{0.5} \cong \frac{r}{R}.$$
(8)

Далее, все многочисленные первичные, фиксируемые в эксперименте данные магнитных микропотоков Φ (рис. 2*a*) и другие данные, входящие в (7) и (8), такие как радиус потокоизмерительных петель *r*, радиус шаров *R*, напряженность намагничивающего поля *H*, магнитная проницаемость материала шаров μ , необходимо обработать в координатах, на которые указывает выражение (8). Именно в таких координатах экспериментально-расчетные данные должны подчиняться (и фактически подчиняются) биссектрисе прямого угла (рис. 2*б*).

Работа выполнена при поддержке Гранта Президента Российской Федерации для молодых ученых – кандидатов наук и их научных руководителей (МК-115.2007.08).

Выводы

Углублены представления о модели поканального намагничивания «плотно упакованной» гранулированной среды. Установлен вид радиального профиля магнитной проницаемости канала намагничивания.

Литература

- 1. Сандуляк А.В. Модель намагничивания пористой среды. Журнал технической физики, 1982, т.52, в.11, с.2267-2269.
- 2. Сандуляк А.В. Физическая модель осаждения ферромагнитных частиц в намагниченной гранулированной среде. ДАН Укр.ССР, 1983, №9, сер.Б., с.49-53.
- 3. Сандуляк А.В. Эпюра магнитной проницаемости шариковой среды. Сб. Теоретическая электротехника (Вища школа, изд-во при Льв.ун-те), 1983, в.35, с.157-162.
- 4. Сандуляк А.В. Намагничивание цепочки шаров. Техническая электродинамика, 1984, №5, с.102-104.
- 5. Преображенский А.А. Магнитные материалы. М.: Высшая школа, 1965, 234с.