
Результаты экспериментальных исследований опорной проходимости автомобилей КамАЗ-4350, КамАЗ-5350 и Урал-4320-31 с дифференциальным и блокированным приводом колёс при установившемся криволинейном движении

к.т.н. доц. Острыцов А.В.
Университет машиностроения
(495) 223-05-23, доб. 1587, avt@mami.ru

Аннотация. Приведены результаты экспериментальных исследований по определению коэффициента сопротивления качению при установившемся криволинейном движении автомобилей КамАЗ-4350, КамАЗ-5350 и Урал-4320-31 с дифференциальным и блокированным приводом колёс. Сделан вывод о возрастании по гиперболической зависимости коэффициента сопротивления качению с увеличением кривизны траектории поворота. Определены возможные пути улучшения маневренности полноприводных грузовых автомобилей при криволинейном движении по деформируемым грунтовым поверхностям.

Ключевые слова: полноприводный автомобиль, маневренность, криволинейное движение, эксперимент, нагрузка на ось, привод к колесам, система управления давления воздуха в шинах, опорная проходимость, минимальный радиус поворота, деформируемая опорная поверхность.

Маневренность армейских многоцелевых грузовых автомобилей является одним из важнейших свойств, определяющих общий уровень их подвижности и способность выполнения функциональных задач по транспортированию грузов в различных дорожно-климатических условиях и по местности [1]. Она характеризует способность автомобиля к изменению своего положения на ограниченной площади и в проездах заданной формы и размеров.

Маневренность зависит от ряда конструкционных параметров автомобилей, определяющих минимальный радиус поворота по оси следа переднего внешнего колеса, наружный габаритный радиус поворота и ширину коридора, занимаемого автомобилем при повороте с заданным наружным габаритным радиусом, а также способности движения в требуемых направлениях, в том числе и по деформируемым опорным поверхностям. При этом использование полноприводных автомобилей обусловлено рядом специфических условий их эксплуатации в армии, нефтяной и газовой промышленности, в сельском хозяйстве, при ликвидации последствий катализмов и катастроф, для чего необходимо обеспечение возможности их движения с наименьшими энергетическими затратами и наибольшим запасом силы тяги по сцеплению.

194 Известия МГТУ «МАМИ» № 2(16), 2013, т. 1
В качестве основных параметров маневренности (параметров криволинейного движения) полноприводных автомобилей по деформируемым грунтовым опорным поверхностям следует считать коэффициент сопротивления качению \(f_a \) и коэффициент использования силы сцепления \(k_p \) [2].

Эти показатели в наиболее простом случае при равномерном установившемся движении одиночного автомобиля по кругу (при повороте управляемых колес на угол \(\alpha_i \)) могут быть выражены следующими зависимостями при условии, что \(\sum_{i=1}^{m} \frac{P_{ki}}{\cos \delta_i} = 0 \):

\[
f_a = \sum_{i=1}^{m} \left(\frac{M_{ki} + P_{ki} \cot \alpha_i + P_{ki} \cot \gamma_i (\cos \phi)}{G_a R_{ct}} \right),
\]

\[
k_p = \frac{1}{\sum_{i=1}^{m} P_{ki(\max)}} - \frac{\sqrt{P_{ki\theta}^2 + P_{kt}^2}}{\sum_{i=1}^{m} P_{ki(\max)}},
\]

где для каждого \(i \)-го колеса:
- \(M_{ki} \) – подводимый крутящий момент;
- \(P_{ki} \) – продольная подводимая (-) или отводимая (+) от колеса сила;
- \(P_{ki\theta} \) и \(P_{ki(\max)} \) – продольная текущая и максимальная по сцеплению сила, развиваемые в контакте колеса с грунтовой опорной поверхностью и затрачиваемые на преодоление её сопротивления;
- \(P_{kt} \) – боковая сила;
- \(r_{ki}, n_{ki} \) – радиус качения и частота вращения колёс, соответствующие прохождению полного круга с круговой траекторией центра масс автомобиля радиусом \(R_{ct} \).

Таблица 1

<table>
<thead>
<tr>
<th>Марка автомобиля (колесная формула)</th>
<th>Масса перевозимого груза, кг</th>
<th>Полная масса (распределение по осям), кг</th>
<th>Удельная мощность, кВт/т (л.с./т)</th>
<th>Радиус поворота по оси переднего колеса, м</th>
<th>Шины: размерность (давление воздуха в шинах, МПа), модель</th>
</tr>
</thead>
<tbody>
<tr>
<td>КамАЗ-4350 (4x4)</td>
<td>4000</td>
<td>11820 (5910 / 5910)</td>
<td>14,9 (20,3)</td>
<td>11,0</td>
<td>425/85R21 (0,10), Камаз-1260 с регулируемым давлением воздуха и рисунком протектора повышенной проходимости (номинальная нагрузка на колесо – 29,4 кН; наружный диаметр – 1260 мм; посадочный диаметр – 533 мм; ширина бего- вой дорожки – 380 мм) [3, 4]</td>
</tr>
<tr>
<td>КамАЗ-5350 (6x6)</td>
<td>6000</td>
<td>15450 (5380 / 10040)</td>
<td>11,4 (15,5)</td>
<td>11,0</td>
<td></td>
</tr>
<tr>
<td>Урал-4320-31 (6x6)</td>
<td>6000</td>
<td>15520 (4850 / 10670)</td>
<td>11,4 (15,5)</td>
<td>10,8</td>
<td></td>
</tr>
</tbody>
</table>

Коэффициент сопротивления качению можно определить также из выражения

\[
f_a = n_a \sum_{i=1}^{m} \frac{M_{ki}}{G_a R_{ct}},
\]
Серия 1. Наземные транспортные средства, энергетические установки и двигатели.

где: \(i_2 \) – суммарное передаточное число трансмиссии; \(n_A \) – количество оборотов двигателя, соответствующие прохождению полного круга с круговой траекторией центра масс автомобиля радиусом \(R_{a1} \).

Зависимость (3) чаще используется для экспериментального определения \(f_a \), так как экспериментально определить \(P_{s1} \) и \(P_{m1} \) весьма сложно. То же относится и к экспериментальному определению коэффициента использования силы сцепления \(k_\phi \).

Достаточно сложно значения этих параметров определить и расчетным путем.

Таблица 2

<table>
<thead>
<tr>
<th>Марка автомобиля</th>
<th>Межосевой привод</th>
<th>(R, \text{ м})</th>
<th>(f_a)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>КамАЗ-4350</td>
<td>Б</td>
<td>(\infty)</td>
<td>0,085</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Б</td>
<td>11,5</td>
<td>0,145</td>
<td>171</td>
</tr>
<tr>
<td></td>
<td>Д</td>
<td>(\infty)</td>
<td>0,092</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>Д</td>
<td>11,0</td>
<td>0,130</td>
<td>153</td>
</tr>
<tr>
<td>КамАЗ-5350</td>
<td>Б</td>
<td>(\infty)</td>
<td>0,119</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Б</td>
<td>12,2</td>
<td>0,240</td>
<td>202</td>
</tr>
<tr>
<td></td>
<td>Б*</td>
<td>14,2</td>
<td>0,288</td>
<td>242</td>
</tr>
<tr>
<td></td>
<td>Д</td>
<td>(\infty)</td>
<td>0,130</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>Д</td>
<td>11,1</td>
<td>0,216</td>
<td>182</td>
</tr>
<tr>
<td>Урал-4320-31</td>
<td>Б</td>
<td>(\infty)</td>
<td>0,135</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Б</td>
<td>12,7</td>
<td>0,270</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>Д</td>
<td>(\infty)</td>
<td>0,145</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td>Д</td>
<td>11,3</td>
<td>0,247</td>
<td>183</td>
</tr>
</tbody>
</table>

В связи с этим были проведены экспериментальные исследования криволинейного движения автомобилей КамАЗ-4350, КамАЗ-5350 и Урал-4320-31 по сухому сыпучему песку (влажность до 6%, общая глубина залегания более 3 м), а автомобиля КамАЗ-5350, кроме того, и по стерне на чернозёме (влажность около 10%). Краткая техническая характеристика испытываемых автомобилей приведена в таблице 1. В процессе исследований были определены значения коэффициента сопротивления качению \(f_a \), которые приведены в таблицах 2 и 3.

Таблица 3

<table>
<thead>
<tr>
<th>Марка автомобиля</th>
<th>Межосевой привод</th>
<th>(R, \text{ м})</th>
<th>(f_a)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>КамАЗ-5350</td>
<td>Б</td>
<td>(\infty)</td>
<td>0,074</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Б</td>
<td>11,4</td>
<td>0,150</td>
<td>203</td>
</tr>
<tr>
<td></td>
<td>Д</td>
<td>(\infty)</td>
<td>0,080</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>Д</td>
<td>11,0</td>
<td>0,138</td>
<td>186</td>
</tr>
</tbody>
</table>

Примечание: Д – диапазонный привод; Б – заблокирован межосовой дифференциал в раздаточной коробке; Б* – заблокированы межосовой дифференциал и межколёсные дифференциалы в среднем и заднем мостах.

Изменение \(f_a \) в функции кривизны траектории поворота \(\rho \) (\(\rho = 1 / R \)) в диапазоне от прямоолинейного движения (\(\rho = 0 \)) до поворота с минимальным радиусом графически проиллюстрировано на рисунках 1 и 2.

Представленные результаты экспериментальных исследований позволяют сделать следующие выводы:

196 Известия МГТУ «МАМИ» № 2(16), 2013, т. 1
Серия 1. Наземные транспортные средства, энергетические установки и двигатели.

- с увеличением кривизны траектории движения ρ (с уменьшением радиуса поворота R) коэффициент сопротивления качению f_a всех автомобилей при движении по грунтовым опорным поверхностям гиперболически возрастает, причем более интенсивно у автомобилей с заблокированными межосевыми дифференциалами;

- при переходе от прямолинейного движения ($\rho = 0$) к движению с минимальным радиусом ($\rho = 0,08...0,10$ м$^{-1}$) коэффициент сопротивления качению автомобилей с колесной формулой 4х4 (КамАЗ-4350) и 6х6 (КамАЗ-5350 и Урал-4320-31) на грунтовых опорных поверхностях при дифференциальном приводе возрастает примерно в 1,4 и 1,7 раза, а при блокированном – в 1,7 и 2,0 раза соответственно;

- при блокировании и межосевого и межколёсных дифференциалов среднего и заднего мостов автомобиля КамАЗ-5350 его движение по сухому сыпучему песку с минимальным радиусом поворота осуществляется с ещё большим сопротивлением качению f_a. При этом значении коэффициента сопротивления качению возрастают в 1,2 раза по сравнению с движением автомобиля в повороте только с заблокированным межосевым дифференциалом и в 2,4 раза – по сравнению с прямолинейным его движением;

- при одинаковых (до упора в ограничители) углах поворота управляемых колес автомобилей, подвергавшихся экспериментальным исследованиям, наименьшие значения радиусов поворота автомобилей с полностью дифференциальным приводом к колесам на 4...11 % меньше, чем с блокированным межосевым приводом. Причём чем ниже сопротивление качению f_a, тем меньше разница в радиусах поворота. В результате изложенного можно определить некоторые пути улучшения маневренности армейских многоцелевых грузовых автомобилей при криволинейном движении по деформируемым грунтовым поверхностям.

Рисунок 1. Изменение коэффициента сопротивления качению автомобилей при движении по сухому сыпучему песку в зависимости от кривизны траектории:
1 – КамАЗ-4350 (Д); 2 – КамАЗ-4350 (Б); 3 – КамАЗ-5350 (Д); 4 – КамАЗ-5350 (Б);
5 – Урал-4320-31 (Д); 6 – Урал-4320-31 (Б); 7 – КамАЗ-5350 (Б*)

Рисунок 2. Изменение коэффициента сопротивления качению автомобиля КамАЗ-5350 при движении по чернозему в зависимости от кривизны траектории:
1 – дифференциальный привод; 2 – заблокирован межосевой дифференциал

Во-первых, у представленных армейских многоцелевых грузовых автомобилей с уменьшением радиуса поворота возрастает степень несовпадения следов колес одного борта и при большой кривизне траектории наблюдается полное их несовпадение. Степень этого несовпадения можно лишь уменьшить, располагая средние оси автомобилей (6х6 или 8х8) как можно ближе к передней и задней осам и применяя (по возможности) все управляемые колеса, особенно на длиннобазных автомобилях. Только на двухосных автомобилях со всеми управляемыми колёсами можно добиться при криволинейном движении полного совпадения
Серия 1. Наземные транспортные средства, энергетические установки и двигатели.
следов колёс. Кроме снижения сопротивления качению за счет прокладывания меньшего количества колец (меньшей деформации грунтовой поверхности), этот путь позволяет получить и меньшую разницу проходных колесом расстояний с определенным уменьшением действующих на колёса продольных и боковых сил, а следовательно, и коэффициентов использования сила сцепления.
Расчеты показывают, что на деформируемых грунтовых поверхностях при статическом повороте с минимальным радиусом при полном совпадении следов колес одного борта сопротивление качению представленных автомобилей всего лишь на 15...25 % больше, чем при прямолинейном их движении. Необходимо, правда, отметить, что такие величины соответствуют уставновившемуся повороту. На практике же при входе автомобилей в поворот и выходе из него при отсутствии электрического или гидрообъёмного привода к колёсам величины сопротивления качению заметно возрастают.
Во-вторых, полученные результаты показывают, что при определенных величинах радиуса поворота, которые могут быть получены экспериментальным или расчетным путем, целесообразно отключение блокирования дифференциалов. Например, при повороте автомобиля Урал-4320-31 на сухом сыпучем песке при радиусе поворота менее 20 м. Но при полностью дифференциальном приводе к колесам наименьшие коэффициенты сопротивления качению и особенно использования сцепных сил могут быть достигнуты только при определенных соотношениях крутящих моментов на колёсах, различных для разных грунтовых поверхностей и радиусов поворота. Простые же механические дифференциалы обеспечивают лишь одно распределение моментов по осям (колесам), поэтому при меняющихся грунтовых условиях выключение блокирования дифференциалов может привести к потере проходимости.
Таким образом, для существенного улучшения маневренности полноприводных автомобилей необходимо обеспечить и меняющееся распределение моментов, и соответствующую траекторию перемещения (радиусам поворота) колёс частоту их вращения без буксования или с одинаковым буксированием. Это может быть реализовано только при применении регулируемых электрических или гидрообъёмных приводов к колёсам автомобиля.

Литература
3. Оценка и выбор пневматических шин регулируемого давления для армейских автомобилей/ В.Н. Абрамов, М.П. Чистов, И.В. Веселов, А.А. Колтуков; Под ред. В.В. Шипилова. – ФГУП 21 НИИ МО РФ, 2006.

Современные тенденции управления автомобильным электроприводом

к.т.н. Жматов Д.В., Горкин В.П., Пахомова Е.Э.
Московский институт энергобезопасности энергоосбережения,
Университет машиностроения,
(495)652-20-04, absh-sila@rambler.ru, (495)223-05-23, доб. 1574, gorval169@yandex.ru, light62@mail.ru

Аннотация. В статье осуществлен обзор вентильного электропривода на контроллере IRMCS3041 компании International Rectifier. Представлены аппаратно-программные средства для определения и сравнения параметров электропривода. Измерительный комплекс разработан на кафедре «Электротехника и элек-