Экспериментальная оценка тяговой способности ременных передач с различными способами натяжения ремня

к.т.н. проф. Баловнев Н.П., Дмитриева Л.А., Семин И.Н.
Университет машиностроения
(495) 223-05-23, доб. 1500, dm@mami.ru

Аннотация. Описываются результаты экспериментальных исследований тяговой способности ременных передач с различными способами натяжения ремня.

Ключевые слова: клиновой ремень, способ натяжения, тяговая способность

Настоящие экспериментальные исследования проведены с целью установления рациональных норм натяжений ремней в передачах с различными способами натяжения, а именно: с натяжением ремня за счет его упругости (передача «а»); с автоматическим натяжением ремня с помощью груза и подвижного вала (передача «б»); с автоматическим натяжением подвижным роликом, установленным на ведомой ветви ремня (таблица 1).

Передача с автоматическим натяжением подвижным роликом, установленном на ведомой ветви ремня, исследовалась в двух вариантах – ролик внутри контура ремня (передача «в») и ролик вне контура ремня (передача «г»). Это вызвано тем, что углы обхвата шкивов в этих передачах могут отличаться весьма значительно, следовательно, различной будет и их тяговая способность.

Таблица 1.

Схемы передач, силы предварительного натяжения ремня \( F_0 \) и исходные соотношения натяжений ветвей ремня \( F_1 / F_2 = m \)

<table>
<thead>
<tr>
<th>№ пп</th>
<th>Передача «а» с закрепленными валами</th>
<th>Передача «б» с подвижным валом</th>
<th>Передача «в» с натяжным роликом (ролик внутри контура ремня)</th>
<th>Передача «г» с натяжным роликом (ролик вне контура ремня)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>( F_0, H ) m</td>
</tr>
<tr>
<td>1</td>
<td>184,4 5</td>
<td>178,1 5</td>
<td>178,1 2,33</td>
<td>178,1 2,33</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>59,4 5</td>
<td>59,4 5</td>
<td>59,4 5</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>33,3 8</td>
<td>33,3 8</td>
<td>33,3 8</td>
</tr>
</tbody>
</table>

Испытания передач проведены в сравнительном варианте, т.е. исходными базовыми передачами были передачи «а» и «б», рассчитанные по ГОСТ 1284.3-96 [1]. Для них исходное значение соотношения натяжений ведущей \( F_1 \) и ведомой \( F_2 \) ветвей ремня принято равным \( F_1 / F_2 = m = 5 \) [2, 3]. Передачи «в» и «г» испытывали при разном \( m = 5, m = 8 \), а также с натяжением ведомой ветви ремня \( F_2 = F_0 \), определенным по ГОСТ 1284.3-96 для передач с автоматическим натяжением, для исключения влияния центробежных сил на тяговую способность.

Испытывались передачи с ремнем нормального сечения «А» длиной \( L = 1500 \) мм. Расчетные диаметры шкивов передач всех типов были \( d_1 = d_2 = 160 \) мм. Частота вращения
Раздел 1. Наземные транспортные средства. энергетические установки и двигатели.

\( n_1 = 950 \text{ мин}^{-1} \).

Величину предварительного натяжения для передач «а» и «б» находим из выражения по ГОСТ 1284.3-96 для соотношения натяжений ветвей ремня \( F_1 / F_2 = m = 5 \):

\[
F_0 = 500 \cdot \frac{(2,5 - C_a) \cdot P_{ном} \cdot C_p}{C_a \cdot V \cdot K} + m_{II} \cdot V^2,
\]

где: \( C_p \) – коэффициент динамичности и режима работы;

\( P_{ном} \) – номинальная мощность передачи с одним ремнем, кВт;

\( C_a \) – коэффициент, учитывающий угол обхвата на малом шкиве;

\( C_L \) – коэффициент, учитывающий длину ремня;

\( K \) – количество ремней в передаче;

\( V \) – скорость ремня, м/с;

\( m_{II} \) – коэффициент, учитывающий влияние центробежных сил, кг/м.

В передачах «в» и «г» величина предварительного натяжения должна быть иной, так как такие передачи имеют значительный запас по тяговой способности и согласно [4, 5, 6, 7] должны определяться по формуле:

\[
F_0 = \left(\frac{m}{m-1} - C_a\right) \cdot \frac{P_{ном} \cdot C_p}{z \cdot V \cdot C_a},
\]

Здесь \( z \) – число ремней в передаче.

При этом рекомендуемое соотношение натяжений ветвей ремня [4, 5, 6] должно быть \( m = 8 \). Тогда формула (2) принимает вид:

\[
F_0 = \frac{10^3 \cdot (1,14 - C_a) \cdot P_{ном} \cdot C_p}{z \cdot V \cdot C_a}.
\]

Для сравнения были испытаны передачи «в» и «г» с натяжением соответствующим \( m = 5 \). При этом величина предварительного натяжения определяется по (2) следующим образом:

\[
F_0 = \frac{10^3 \cdot (1,25 - C_a) \cdot P_{ном} \cdot C_p}{z \cdot V \cdot C_a}.
\]

Здесь принято \( C_a = 1 \), так как предварительное натяжение при испытаниях передач «в» и «г» устанавливалось при минимально возможном отклонении ремня от горизонтали, и начальные углы обхвата были близки к 180\(^0\).

Кроме изложенного для сравнения были испытаны передачи «в» и «г» при натяжении ведомой ветви ремня \( F_2 = F_0 = 178,1 \) Н, что соответствует \( m = 2,33 \).

Все данные по \( F_0 \) и \( m \) сведены в таблицу 1.

При испытаниях фиксировались моменты на ведущем \( T_1 \) и ведомом \( T_2 \) валах, суммарное натяжение ветвей ремня \( F_s = F_1 + F_2 \), а также частоты вращения ведущего \( n_1 \) и ведомого \( n_2 \) валов передачи, т.е. параметры, позволяющие получить кривые скольжения и КПД передач. Все параметры фиксировались в динамическом режиме.

По результатам испытаний были построены кривые скольжения и КПД всех испытываемых передач для всех режимов, приведенными в таблице 1. Кривые строились в двух вариантах: по коэффициенту тяги \( \psi \) (рисунки 1...3) и моменту \( T_2 \) (рисунки c 4 по 6).

Коэффициент тяги в процессе обработки результатов рассчитывался по формуле:

\[
\psi = \frac{2 \cdot T_2}{F_s \cdot d_1},
\]

24 Известия МГТУ «МАМИ» № 2(14), 2012, т. 1
Рисунок 1 – Кривые скольжения и КПД: \( \eta(a_1, \psi) \) и \( \xi(a_1, \psi) \) – передача с натяжением ремня за счет упругости; \( \eta(b_1, \psi) \) и \( \xi(b_1, \psi) \) – передача с подвижным валом; \( \eta(c_1, \psi) \) и \( \xi(c_1, \psi) \) – передача с автоматическим натяжением подвижным роликом, установленным внутри контура ремня при \( F_0 = 178.1 \) Н; \( \eta(e_1, \psi) \) и \( \xi(e_1, \psi) \) – передача с автоматическим натяжением подвижным роликом, установленным вне контура ремня при \( F_0 = 178.1 \) Н.

Рисунок 2 – Кривые скольжения и КПД: \( \eta(a_1, \psi) \) и \( \xi(a_1, \psi) \) – передача с натяжением ремня за счет упругости; \( \eta(b_1, \psi) \) и \( \xi(b_1, \psi) \) – передача с подвижным валом; \( \eta(c_2, \psi) \) и \( \xi(c_2, \psi) \) – передача с автоматическим натяжением подвижным роликом, установленным внутри контура ремня при \( F_0 = 59.4 \) Н; \( \eta(e_3, \psi) \) и \( \xi(e_3, \psi) \) – передача с автоматическим натяжением подвижным роликом, установленным внутри контура ремня при \( F_0 = 33.3 \) Н.

Скольжение определялось по выражению:

\[
\xi = \frac{(n_1 - n_2) \cdot i_0}{n_1}
\]  

где: \( i_0 \) – передаточное отношение на холостом ходу.
Рисунок 3 – Кривые скольжения и КПД: \( \eta(a,1,\psi) \) и \( \xi(a,1,\psi) \) – передача с натяжением ремня за счет упругости; \( \eta(\beta,1,\psi) \) и \( \xi(\beta,1,\psi) \) – передача с подвижным валом; \( \eta(\varepsilon,2,\psi) \) и \( \xi(\varepsilon,2,\psi) \) – передача с автоматическим натяжением подвижным роликом, установленным вне контура ремня при \( F_0 = 59,4 \) Н; \( \eta(\zeta,3,\psi) \) и \( \xi(\zeta,3,\psi) \) – передача с автоматическим натяжением подвижным роликом, установленным вне контура ремня при \( F_0 = 33,3 \) Н.

Рисунок 4 – Кривые скольжения и КПД: \( \eta(a,1,T) \) и \( \xi(a,1,T) \) – передача с натяжением ремня за счет упругости; \( \eta(\beta,1,T) \) и \( \xi(\beta,1,T) \) – передача с подвижным валом; \( \eta(\varepsilon,1,T) \) и \( \xi(\varepsilon,1,T) \) – передача с автоматическим натяжением подвижным роликом, установленным внутри контура ремня при \( F_0 = 178,1 \) Н; \( \eta(\zeta,1,T) \) и \( \xi(\zeta,1,T) \) – передача с автоматическим натяжением подвижным роликом, установленным вне контура ремня при \( F_0 = 178,1 \) Н.

Кривые обозначены следующим образом: кривая КПД для передачи «а» с предварительным натяжением \( F_0 = 184,4 \) Н (таблица 1), построенная по моменту \( T_2 \) – \( \eta(a,1,T) \); кривая скольжения передачи «а», с натяжением \( F_0 = 33,3 \) Н, построенная по коэффициенту тяги \( \psi \) – \( \xi(a,1,\psi) \).

Результаты испытаний представлены на рисунках с 1 по 6. На каждом рисунке для сравнения представлены кривые скольжения и КПД базовых передач «а» и «б» с предварительным натяжением, найденном по ГОСТ 12843-96, т.е. кривые \( \eta(a,1,\psi) \), \( \xi(a,1,\psi) \) и
Раздел 1. Наземные транспортные средства, энергетические установки и двигатели.

Рисунок 5 – Кривые скольжения и КПД: $\eta(a,1,T)$ и $\xi(a,1,T)$ – передача с натяжением ремня за счет упругости; $\eta(\delta,1,T)$ и $\xi(\delta,1,T)$ – передача с подвижным валом; $\eta(\varepsilon,2,T)$ и $\xi(\varepsilon,2,T)$ – передача с автоматическим натяжением подвижным роликом, установленным внутри контура ремня при $F_0 = 59,4$ Н; $\eta(\varepsilon,3,T)$ и $\xi(\varepsilon,3,T)$ – передача с автоматическим натяжением подвижным роликом, установленным внутри контура ремня при $F_0 = 33,3$ Н.

Рисунок 6 – Кривые скольжения и КПД: $\eta(a,1,T)$ и $\xi(a,1,T)$ – передача с натяжением ремня за счет упругости; $\eta(\delta,1,T)$ и $\xi(\delta,1,T)$ – передача с подвижным валом; $\eta(\varepsilon,2,T)$ и $\xi(\varepsilon,2,T)$ – передача с автоматическим натяжением подвижным роликом, установленным вне контура ремня при $F_0 = 59,4$ Н; $\eta(\varepsilon,3,T)$ и $\xi(\varepsilon,3,T)$ – передача с автоматическим натяжением подвижным роликом, установленным вне контура ремня при $F_0 = 33,3$ Н.

На рисунках 2 и 5 дополнительно приведены кривые для передач «в» при двух уровнях предварительного натяжения, соответствующих $m = 5$ и $m = 8$, а на рисунках 3 и 6 аналогичные для передачи «г».
Раздел 1. Наземные транспортные средства, энергетические установки и двигатели.

Из рисунка 1 видно, что, на первый взгляд, при стандартном натяжении ни одна из передач явлых преимуществ не имеет, а именно, при «оптимальном» [8, 9] коэффициенте тяги \( \psi_{opt} = 0,67 \) (вертикальная штриховая линия) уровень скольжения и КПД практически совпадают, и лишь для передачи «в» скольжение несколько выше, однако оно не выходит за рекомендуемые значения. Кроме того, при уменьшенных значениях \( F_0 \) передачи «в» и «г» (рисунке 2 и рисунке 3) имеют более низкий КПД по сравнению с базовыми передачами, но выигрывают по величине скольжения несущественно, поскольку и у базовых передач скольжение в допустимых пределах.

Существенным следует признать лишь то, что у базовых передач КПД больше стабилен практически на всем диапазоне изменения коэффициента тяги \( \psi \), а у передач «в» и «г» он достаточно высок только при больших значениях \( \psi \).

Если же обратиться к графикам, построенным по моменту \( T_2 \), то картина становится явно другой. Так, из рисунка 6 видно, что передача «г» не выходит за рекомендуемые значения скольжения (3%) даже при минимальном предварительном натяжении при моменте \( T_2 = 41 \) Н.м, а у передач «в» и «б» наступает полное буксование уже при моментах \( T_2 = 35 \) Н.м и \( T_2 = 27 \) Н.м соответственно. КПД при этом у всех передач приемлемый.

Значительно хуже показали как по скольжению, так и по КПД у передачи «в» по сравнению с передачей «г» и сравнимы с передачей «а», что объясняется известным эффектом самоналожения последней [9].

Результаты измерений углов наклона ведомой ветви ремня передачи «в» и «г» на холостом ходу и под нагрузкой приведены в таблице 2.

<table>
<thead>
<tr>
<th>№ пп</th>
<th>( F_0 ), Н</th>
<th>( m )</th>
<th>Передача «в» с натяжным роликом (ROLIK ВНУТРИ КОНТУРА РЕМИЯ)</th>
<th>Передача «г» с натяжным роликом (ROLIK ВНЕ КОНТУРА РЕМИЯ)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Холостой ход</td>
<td>Нагрузка</td>
</tr>
<tr>
<td>1</td>
<td>178,1</td>
<td>2,33</td>
<td>176,73°</td>
<td>166,44°</td>
</tr>
<tr>
<td>2</td>
<td>59,4</td>
<td>5</td>
<td>168,91°</td>
<td>158,08°</td>
</tr>
<tr>
<td>3</td>
<td>33,3</td>
<td>8</td>
<td>156,39°</td>
<td>150,25°</td>
</tr>
</tbody>
</table>

**Выводы**

По результатам проведенных испытаний и их анализа можно сделать следующие выводы:

1. Передача с автоматическим натяжением подвижным роликом, установленным на ведомой ветви ремня, существенно превосходит передачу с натяжением ремня за счет его упругости и передачу с автоматическим натяжением ремня с помощью груза и подвижного вала по тяговой способности, особенно передача с роликом, расположенным вне контура ремня. Для ее не может быть рекомендовано исходное отношение натяжений ветвей ремня \( m = 8 \).

2. Оценку тяговой способности по коэффициенту тяги \( \psi \) нельзя считать универсальной для передач со всеми известными способами натяжения ремня как не отражающую их недостатки и преимущества.

3. Величину предварительного натяжения и исходное отношение натяжений ветвей ремня \( m \) не следует назначать одинаковым для передач с автоматическим натяжением подвижным роликом, установленным вне и внутри контура ремня. Необходимо провести дополнительные, более расширенные испытания, а также теоретическое исследование таких передач.

**Литература**

К вопросу исследования устойчивости и управляемости гибридного автомобиля с изменяемым в процессе движения типом привода  
к.т.н. Баулина Е.Е., к.т.н. доц. Дементьев Ю.В., Итуральде П., Кислов А.А.  
Университет машиностроения 8(495)223-05-23 (1204) baulina@mami.ru

Аннотация. В статье рассмотрены проблемы устойчивости и управляемости автомобиля с комбинированной энергетической установкой (КЭУ) при изменении типа привода в процессе движения.

Ключевые слова: КЭУ, параллельная схема КЭУ, привод на разные оси, управляемость, устойчивость, отклонение бокового ускорения, отклонение угловой скорости.

В связи с ухудшением экологической обстановки в настоящее время в современных автомобильных промышленностях проявляется тенденция развития автомобилей с комбинированной энергетической установкой (КЭУ). Интерес к таким автомобилям объясняется тем, что они обладают меньшим расходом топлива и меньшей токсичностью отработавших газов, что весьма актуально для крупных городов с большим автомобильным парком. Вариации разные схемы КЭУ: последовательная, параллельная, дифференциальная (которую часто называют английским термином "сплит") и последовательно-параллельная, отличающиеся наличием или отсутствием механической связи ДВС и ведущих колёс автомобиля [1].

В мировом автомобильном производстве реализованы комбинированные установки трёх схем. Многие автомобили с КЭУ выполнены по параллельной схеме [1], т.к. она имеет и возможность применения одной электромашины вместо двух. Параллельная схема может быть реализована в двух вариантах. В первом варианте ДВС и обратимая электромашина связаны с ведущими колесами через общую трансмиссию, во втором — они установлены в приводе разных осей. При работе КЭУ параллельной схемы, выполненой по второму варианту, у автомобиля при переходе с работы от одного двигателя на работу от другого неизбежно меняется тип привода. Например, начинаящее движение на электродвигателе с приводом на переднюю ось продолжается на ДВС с приводом на заднюю, или наоборот. Алгоритм управления КЭУ автоматизирован и, как правило, создается с целью снижения вредных выбросов и расхода топлива. В этом случае переключение силовой установки происходит независимо от типа привода автомобиля. О влиянии при этом смены привода на устойчивость и управляемость информация практически отсутствует. Таким образом, в параллельной схеме КЭУ с приво-