коленей, и 50 семян в 3 и 4 поколении.
Таким образом, устойчивость к кадмию сохраняется в 4 поколениях, разработанный метод мы можем рекомендовать для получения растений, устойчивых к кадмию.

Литература
2. Гуралячук Ж.З. Механизмы устойчивости растений к тяжелым металлам. Физиология и биохимия культурных растений, Т. 26, № 2, 1994, с. 107-118.
3. Гладков Е.А. Влияние комплексного воздействия тяжелых металлов на растения мелан-
4. Гладков Е.А., Долгих Ю.И., Бирюков В.В., Гладкова О.В. Клеточная селекция газонных
5. Гладков Е.А. Клеточная селекция растений, обладающих устойчивостью к тяжелым
6. Гладков Е.А., Гладкова О.В. Оценка комплексной фитотоксичности тяжелых металлов и
получение растений, обладающих комплексной устойчивостью. Биотехнология, № 1, 2007. с. 81-86.
8. Domozicka E., Opatrny Z. The effect of cadmium on tobacco cell culture and the sebction
9. Гончарук Е.А., Калашикова Е.А., Дубравина Г.А., Загоскина Н.В. Влияние кадмия на
морфологические и биохимические характеристики чайного растения и льна-долгунца.
10. Мохаммед С.Е., Каранова С.Л., Долгих Ю.И. Получение толерантных к ионам кадмия
клеточных линий и растений пшеницы методом клеточной селекции. Материалы Всерос-
сийской конференции «Современные аспекты структурно-функциональной биологии

Легионеллез: причины возникновения, профилактические мероприятия
Чл.-корр. РАН д.т.н. проф. Систер В.Г., к.т.н. доц. Цедилин А.Н., к.т.н. доц. ИванниковаЕ.М.
Университет машиностроения
8 (499) 267-19-70, vgs001@mail.ru, azedilin@yandex.ru, igezh510@yandex.ru
д.б.н. проф. Тараковский И.С.
ФГБУ НИИ эпидемиологии и микробиологии им. Н.Ф. Гамалеи
Министерства здравоохранения и социального развития РФ
8 (495) 193-30-01, info@gamaleya.org
Шульга Е.Г.
ООО «Национальная инновационная компания»
8 (495)623-58-77, shustava21@mail.ru

Аннотация. В статье рассмотрены особенности эпидемиологии легионеллеза,
сведения о профилактических мероприятиях.

Ключевые слова: легионеллез, дезинфекционные мероприятия.

Введение
Совершенствует повышения для оптимальных условий жизнедеятельности,
усиливают их конструкции и насыщая их разнообразным инженерным оборудованием,
человек создает принципиально новые искусственные экологические ниши, которые в течение
определенного времени заполняются адаптированными к их условиям видами организмов.

Известия МГТУ «МАМИ» № 2(14), 2012, т. 4 283
Глава 6. Инженерная экология и смежные вопросы

Исключением не является и инженерное оборудование зданий и сооружений с повышенным скоплением населения. Особое внимание следует уделять центральным кондиционерам, системам горячего водоснабжения с застойными зонами, бассейнами и пр., т. е. водным объектам, где возможно развитие популяций легионелл до опасного уровня, приводящего к возникновению техногенного заболевания – легионеллеза.

Основная часть

Легионеллез или болезнь легионеров известна уже более 30 лет. К настоящему времени разработаны методы ее диагностики и лечения, однако возбудитель по-прежнему (в силу своей непредсказуемости) представляет угрозу здоровью человека, вызывая спорадические случаи и крупные эпидемические вспышки тяжелых пневмоний с высоким процентом летальных исходов в различных странах мира. В РФ вспышка легионеллеза была зарегистрирована в г. Верхняя Пышма Свердловской области в 2007 г. Благодаря оперативной профилактической работе летальность была минимизирована (более 100 заболевших, 5 летальных исходов). [1, 2]

Возбудитель легионеллеза – Legionella pneumophila как и другие виды семейства Legionellaceae (более 50 видов, большая часть которых является сапрофитами и не представляет опасность для человека) широко распространены в природе, обитая в пресноводных водоемах, где они паразитируют в водных амебах и других простейших. [3]. Легионеллы устойчивы во внешней среде: в жидкостях при температуре 25 °С могут сохраняться 112 дней, при температуре 4 °С – 150 дней. Легионеллы могут выживать в водопроводной воде до года, в дистиллированной – 2 - 4 месяца. Микроорганизмы быстро (за 1 мин) погибают под воздействием 70 % спирта, 1% раствора формалина, 0,002% раствора фенола, в течение 10 мин – в 3% растворе хлорамина.

Размножение легионелл активно идет в теплой воде в диапазоне температур 20-45 °С, хотя их выделяют и из холодной воды. Условия выживания легионелл в искусственных биосистемах более благоприятны, чем в естественных, что приводит к накоплению в них возбудителя в высоких концентрациях. Легионеллы активно колонизуют различные типы поверхностей (металлические, керамические, синтетические и т. п.) водопроводного, промышленного, медицинского оборудования с образованием так называемых биопленок, в которых легионеллы значительно более устойчивы к действию дезинфицирующих веществ по сравнению с планктонными формами. [5] При колонизации легионеллами искусственных водных систем, к которым относятся системы горячего и холодного водоснабжения, централизованные системы кондиционирования воздуха с водным охлаждением, градиары, вихревые бассейны и джакузи массового пользования в аквапарках и спортивно-восстановительных центрах, увлажнители воздуха, фонтаны и т.д. концентрация легионелл значительно возрастает, что представляет эпидемическую опасность.

Легионеллез является сапрофитной инфекцией, протекающей с поражением органов дыхания, часто в форме тяжелых пневмоний. Механизм передачи легионеллеза – аэрозольный, путь – воздухно-капельный. Факторами передачи инфекции являются мелкодисперсионный водный аэрозоль и вода, контаминированные легионеллами. Случаи легионеллеза выявляют круглогодично, но пик заболеваемости приходится на летние месяцы.

Особенностью эпидемиологии легионеллезной инфекции является выделение трех основных групп заболеваний по характеру приобретения инфекции:

- внебольничная пневмония легионеллезной этиологии (эпидемические вспышки и спорадические случаи);
- нозокомиальный легионеллез (внутрибольничная инфекция);
- легионеллез, связанный с поездками, путешествиями (travel-associated legionellosis).

Для нозокомиального легионеллеза характерны как отдельные спорадические случаи, так и достаточно крупные эпидемические вспышки.

К группам риска при нозокомиальном легионеллезе относятся пациенты старше 25 лет.
в стационарах и отделениях, где активно применяется интенсивная иммуносупрессивная терапия (трансплантации органов, онкологии, реанимации, ожоговых, хирургии и др.); больные диабетом, сердечно-сосудистыми заболеваниями, легочной недостаточностью; больные, лечение которых сопровождается инфузией и вентиляцией легких.

Риск возникновения нозокomialного легионеллеза определяется, прежде всего, возможностью контаминации легионеллами систем водоснабжения лечебно-профилактических учреждений, что при температуре горячей воды не превышающей 50-55°С происходит достаточно часто. Опасность представляет также контаминация легионеллами медицинского оборудования и инструментария, связанного с процедурами интубации и вентиляции легких, оперативного вмешательства, парентерального питания пациента. Следует отметить, что внебольничный легионеллез вызывают преимущественно штаммы Legionella pneumophila серогруппы 1, а возбудителями нозокomialного легионеллеза у лиц с иммунодефицитными состояниями часто являются легионеллы других серогрупп и иных видов, прежде всего L. micdadei, L. bozemani, L. longbeachae и др.

Присутствие Legionella pneumophila в воде различных объектов окружающей среды, воде бассейнов, аквахардов, джакузи, а также в водных системах кондиционирования воздуха в концентрации менее 1 × 10^2 м.к. на 1 л является допустимым и не требует проведения профилактических мероприятий. При обнаружении легионелл в концентрации в диапазоне от 1 × 10^2 до 9 × 10^3 м.к. на 1 л делается вывод о колонизации данного объекта легионеллами в концентрации, не представляющей эпидемической опасности, но требующей регулярного ежемесячного микробиологического контроля и проведения профилактических мероприятий. При обнаружении легионелл в концентрации 1 × 10^4 м.к. на 1 л и выше делается вывод о колонизации данного объекта легионеллами в концентрации, представляющей эпидемическую опасность и требующей дезинфициционных и профилактических мероприятий [6].

Количественное микробиологическое исследование в отношении контаминации легионеллами осуществляется в соответствии с требованиями нормативных методических документов и проводится в рамках производственного контроля.

Профилактические мероприятия включают:
- общую очистку и промывку системы;
- физическую и (или) химическую дезинфекцию;
- резкое повышение температуры воды в системе до 65°С и выше;
- применение дезинфицирующих средств, обладающих способностью разрушать и предотвращать образование новых микробных биопленок.

Тактика очистки, промывки и обеззараживания водной системы зависит от условий эксплуатации и материалов конструкции.

Основными методами дезинфекции искусственных водных резервуаров являются термический, химический, фильтрационный.

Выбор метода или их сочетания осуществляют в зависимости от типа водного объекта, подлежащего дезинфекции. Замкнутые водные системы необходимо чистить и промывать не реже 2 раз в год. При обнаружении в системах легионелл ежеквартально проводят дезинфекционные мероприятия с последующим обязательным бактериологическим исследованием воды.

В ЛПО, гостиницах, офисах учреждений, на транспорте (куризны и др. морские и речные суда) обеззараживание подлежит места возможного распространения и накопления легионелл – искусственные водные резервуары: центральные кондиционеры, увлажнители, душевые установки, коммуникации горячей воды с застойными зонами, плавательные бассейны, ванны для бальнеопроцедур.

Заключение

Нами проведены исследования по биологической очистке центральных кондиционеров и систем горячего водоснабжения с температурой воды до 50°С.

Известия МГТУ «МАМИ» № 2 (14), 2012, т. 4 285
Раздел 6. Инженерная экология и смежные вопросы

В первом случае в 2005 г. для очистки камер увлажнения центральных кондиционеров был использован электрохимический метод по насыщению рециркулирующей воды для увлажнения воздуха ионами меди и серебра. При двухмесячной профилактической работе было понижено содержание легионелл в воде с 10^3 м.к. на 1 л до безопасного значения 10^1 м.к. на 1 л. В 2010 г. эксперимент был повторен на том же центральном кондиционере. Начальная степень контаминации легионеллами приблизилась к значению 10^3 м.к. на 1 л, что свидетельствует об интенсивности данного типа биозагрязнений. При двухмесячной профилактической работе по предварительно отработанной схеме было понижено содержание легионелл в воде до безопасного значения 10^1 м.к. на 1 л.

В 2010 – 2011 г.г был апробирован фильтрационный метод снижения концентрации легионелл в системах горячего (до 50 °C). Фильтрационный метод показал устойчивое снижение концентрации легионелл в системах горячего до безопасного значения (менее 10^1 м.к. на 1 л). Работы в этой области продолжаются.

Гигиеническое воспитание населения является также одним из методов профилактики легионеллеза. Оно включает в себя представление населению подробной информации о легионеллезе, основных симптомах заболевания и мерах профилактики с использованием средств массовой информации, листовок, плакатов, проведением индивидуальной беседы с пациентом и другие средства. Данная работа выполняется, в том числе, при финансовой поддержке Минобрнауки России.

Литература

1. Онищенко Г.Г., Лазикова Г.Ф., Чистякова Г.Г. и др. Эпидемиологическая характеристика вспышки легионеллеза в г. Верхняя Пышма. Журн. микробиол., 2008, 2, с. 82-85.
2. Тартаковский И.С., Гинцбург А.Л., Лазикова Г.Ф. и др. Стандарты лабораторной диагностики легионеллеза и их применение во время эпидемической вспышки пневмоний в г. Верхняя Пышма. Журн. микробиол., 2008, 2, с. 16-19.
4. Систер В.Г., Тартаковский И.С., Иванникова Е.М., Цедлин А.Н., Филатов Н.Н. Экологическая и микробиологическая безопасность центральных кондиционеров в гостинищах. Журн. Пять звезд, 2011, 5, 35-36.
7. Методические указания по выявлению бактерий Legionella pneumophila в объектах окружающей среды. МУК 4.2.2.217.; Тартаковский И.С., Систер В.Г., Цедлин А.Н., Иванникова Е.М. и др. 2007. 30 с.

Взрывы промышленных пыле и их предупреждение

к.т.н. проф. Бондарь В.А., к.т.н. проф. Любартович В.А.

Университет машиностроения

Аннотация. Рассматривается опасность взрывов и пожаров пылевоздушных смесей в различных отраслях промышленности. Предусматриваются обязательные меры по предупреждению разрушения аппаратов, перерабатывающих пылевые смеси.

Ключевые слова: взрыв, пожар, пылевоздушные смеси, защита аппаратов

Известия МГТУ «МАМИ» № 2(14), 2012, т. 4