Раздел 1. Наземные транспортные средства, энергетические установки и двигатели.

К вопросу об инженерной методике расчета лепестковых газодинамических подшипников турбокомпрессоров

d.t.n. prof. Merkulov V.I., Plyakin M.E., k.t.n. Tishenko I.V.
Университет машиностроения, ОАО НПО «Наука»
8 (495) 223-05-23, доб. 1297, 1573, tgd@mami.ru
8 (495) 775-31-10, доб. 682, IV.Tishenko@napo-nauka.ru

Аннотация. В статье рассмотрена инженерная методика расчета лепестковых газодинамических подшипников. Выполнены расчеты по данной методике и выполнено сравнение с экспериментальными результатами, полученными другими авторами. Рассмотрены области применения таких подшипников.

Ключевые слова: лепестковый газодинамический подшипник, турбомашина, микрогазотурбинная установка.

Постановка задачи

Возрастание скорости и энергопотребности современных турбоходильников для систем кондиционирования воздуха (СКВ) летательных аппаратов (ЛА) с одновременным ужесточением требований к ним по надежности, габаритным размерам и массе вызывает необходимость совершенствования подшипниковых узлов и, в первую очередь, за счет совершенствования форм поверхности качения.

В этой связи оправдан неуклонный рост интереса к разработкам и внедрению газодинамических подшипников в быстроходных лопаточных машинах различного назначения в РФ и за рубежом.

Это, в первую очередь, касается турбоходильников для СКВ гражданских и военных самолетов, микрогазотурбинных установок, малошумных вентиляторов, компрессоров различного назначения, в т.ч. для тепловых насосов и т.д.

Этот интерес вызван следующими принципиальными особенностями газовых подшипников:
• низкая вязкость газа обеспечивает низкие потери на трение, увеличение срока службы и повышение энергоэффективности;
• инертность газа по отношению к перекачиваемой среде;
• температурная стабильность свойств газа обеспечивает работоспособность подшипника при высокой температуре, которая зависит только от используемых материалов компонентов.
Газовые подшипники по принципу работы разделяются на:
- газостатические – с внешним наддувом;
- газодинамические – без внешнего наддува;
- гибридные.

В статье рассматриваются лепестковые газодинамические подшипники радиальные и упорные без внешнего наддува применительно к работе в СКВ гражданских самолетов и перспективы их использования в других областях энергетики.

В 2010-2011 г. сотрудниками МГТУ «МАМИ» при участии сотрудников КБ ОАО НПО «Наука» был выполнен ряд работ по разработке инженерной методики расчета несущей способности газодинамических подшипников в отсутствии внешних нагрузок и оценке виброустойчивости ротора при внешних нагрузках.

Инженерный метод расчета лепестковых газодинамических подшипников

Основные допущения теории газовой смазки:
1) динамическая вязкость не зависит от давления;
2) течение в газовом слое ламинарное;
3) течение изотермическое;
4) инерционные и гравитационные силы пренебрежимо малы по сравнению с силами вязкости.
5) результатами расчета после выбора конструктивных параметров подшипника (длины, диаметра цапфы и количества лепестков в подшипнике) является определение зависимости его несущей способности и жесткости от режимов работы.

На основе полученных данных выбирается жесткость пакета лепестков, исходя из предположения, что эта жесткость больше жесткости газового слоя в подшипнике.

Эпюры полного давления в газодинамическом слое \(p_{gf} \), несущая способность \(W_{sf} \) и жесткость \(\sigma_{sf} \) определяются как функции безразмерных параметров \(\chi, \sigma \) и \(\varepsilon \).

\[
p_{gf} (\chi,\varepsilon,\sigma) = p_{gf1} (\chi,\varepsilon,\sigma) + p_{gf2} (\chi,\varepsilon,\sigma), \quad [\text{Па}] \tag{1}
\]

\[
W_{gf} (\chi,\varepsilon,\sigma) = \sqrt{W_r^2 + W_n^2}, \quad [\text{Н}]
\tag{2}
\]

\[
\sigma_{sf} = \frac{W_{sf}}{h}, \quad [\text{Н/м}]
\tag{3}
\]

где: \(p_{gf} \) – суммарное давление в газовом слое,

\(W_{sf}, W_n, W_r \) – несущие способности,

\(\sigma_{sf} \) – жесткость.

Используемые здесь безразмерные параметры, равны:

\[
\chi = \frac{6 \cdot \mu \cdot \omega \cdot r^2}{p_0 \cdot h^2}, \quad \sigma = \frac{2 \cdot r}{L}, \quad \varepsilon = \frac{L}{h},
\tag{4}
\]

где: \(\mu \) – динамическая вязкость,

\(\omega \) – угловая частота вращения \(\omega = 2 \cdot \pi \cdot f, \) 1/с,

\(r \) – радиус вала, м,

\(p_0 \) – статическое давление, Па,

\(h \) – зазор между лепестками и валом, м,

\(L \) – длина подшипника, м.

Методика расчета была апробирована на примере турбохолодильника с ротором, состоящим из трех лопаточных колес и двух валов между ними.

Параметры:
- общая масса вращающегося узла – 3,44 кг;
- масса, приходящаяся на левый подшипниковый узел 0,88 кг, на правый – 2,56 кг;
- диапазон частот вращения вала 1000 – 37000 об/мин.

280 Известия МГТУ «МАМИ» № 2(14), 2012, т. 1
Раздел 1. Наземные транспортные средства, энергетические установки и двигатели.

- диаметр цапфы подшипника 50 мм;
- длина подшипника выбрана из условия равенства диаметру как наиболее стабильное сочетание параметров;
- количество лепестков $z \approx r^{2/3}$;
- монтажный зазор в узле на радиус 50 – 100 мкм;
- полуамплитуда кривизны лепестка 10 мкм;
- эксцентрикситет по условию всплывания принимается равным $50 – 10 – 3 = 37$ мкм, где 3мкм условно нулевой зазор при всплывании ротора.

При этих условиях несущая сила опоры в зависимости от частоты вращения при условии всплывания данной конструкции приведена на рисунке 1.

![Рисунок 1 – Несущая сила опоры F [Н] в зависимости от частоты вращения вала n [об/мин] при условии всплывания](image)

Находим на рисунке 1 пересечение зависимости и статической нагрузки на опору. Для данного варианта они равны 4000 об/мин для первой опоры и 13000 об/мин для второй опоры. Если нас устраивает частота всплывания, то переходим к определению жесткости опоры и рабочих зазоров. Если частота всплывания выше желаемой, то следует изменить диаметр или длину опор. При изменении монтажного зазора стоит учитывать условия сборки и изготовления деталей опор. Минимальный монтажный зазор не рекомендуется задавать меньше 20 мкм. Увеличение зазора свыше 200 мкм может приводить к нежелательным вибрационным нагрузкам, пониженному демпфированию опоры и снижению ресурса опор.

Для определения жесткости газового слоя в опоре необходимо, задав частоту вращения на интересующем режиме, изменения эксцентрикситет, получить зависимость несущей способности от него. Жесткость газового слоя опоры определяется отношением разности несущих способностей к разности эксцентрикситетов. При увеличении частоты вращения жесткость газового слоя увеличивается. Определяем жесткость опор на режиме 35000 об/мин и получим зависимость несущей способности от эксцентрикситета.

Таблица 1

<table>
<thead>
<tr>
<th>e, мкм</th>
<th>F, Н</th>
<th>Жесткость, Н/мкм</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>16</td>
<td>1,6</td>
</tr>
<tr>
<td>10</td>
<td>25</td>
<td>1,8</td>
</tr>
<tr>
<td>15</td>
<td>35</td>
<td>2</td>
</tr>
<tr>
<td>20</td>
<td>46</td>
<td>2,2</td>
</tr>
<tr>
<td>25</td>
<td>59</td>
<td>2,6</td>
</tr>
<tr>
<td>30</td>
<td>74</td>
<td>3</td>
</tr>
<tr>
<td>35</td>
<td>96</td>
<td>4,4</td>
</tr>
</tbody>
</table>

Как видно из таблицы 1 и рисунка 2, жесткость увеличивается с увеличением эксцен-
Раздел 1. Наземные транспортные средства, энергетические установки и двигатели.

Рисунок 2 – Жесткость опоры в зависимости от эксцентриситета

В дальнейшем, используя значения жесткости, можно провести уточненный расчет критических частот роторной системы с учетом упругости опор.

В силу определенных ограничений, данная расчетная методика является поверхностной и имеет ряд допущений. Помимо допущений об однородности, несжимаемости и изотропности среды в опоре, есть и допущения конструктивного характера. Предполагается, что форма лепестка в расчете носит сформировавшийся характер под действием упругих сил и давления смазочного слоя. Это допущение вполне применимо для лепестков без отдельных подкладных пружин. С их внедрением необходимо более точно определять форму лепестков в процессе работы. Одним из расчетных методов, позволяющих учесть этот эффект, является численное моделирование газодинамики опор с учетом упругости лепестков. Подобные расчеты имеют смысл проводить для отработки новых конструкций, анализе особенностей конструкции из-за гораздо большего времени машинного расчета по сравнению с указанной выше методикой.

Разработанная методика инженерного расчета газодинамических опор позволяет, используя основные геометрические и режимные параметры установки, определить несущую способность опор, их жесткость и частоту вращения вала, при которой происходит всплытие вала, критические частоты системы в зависимости от жесткости опор и массы пакетов лепестков.

Данная методика апробирована на быстроходных лопаточных машинах с весом ротора от 100 г до 14 кг и рекомендована к применению в текущих проектах ОАО НПО «Наука».

Анализ экспериментальных данных лепестковых газодинамических подшипников

С целью верификации расчетной модели упорного газодинамического подшипника по результатам зарубежных и отечественных исследований был выполнен обзор современных работ. Сопоставление результатов расчета с экспериментальными данными приведено в таблице 2. Отклонение расчетных значений от экспериментальных составило от 5 % до 20 %.

При этом основные характеристики газодинамических подшипников (радиальных и осевых) менялись в следующих диапазонах:
- радиальные подшипники газостатические и лепестковые газодинамические дисс диаметром вала от 32 до 64 мм при частотах вращения от 50000 об/мин до 90000 об/мин обеспечивали несущую способность от 7 кг до 40 кг;
- осевые подшипники – газостатический размером \(\frac{d_{вн}}{d_{нар}} = 130 \text{ мм} / 170 \text{ мм} \) выдерживал
Раздел 1. Наземные транспортные средства, энергетические установки и двигатели.

осевую нагрузку 405-920 кг; осевой лепестковый подшипник – \(d_{вн} / d_{вр} = 180 \text{ мм} / 380 \text{ мм} \) – соответственно 10,4 – 30,6 кг.

Таблица 2

<table>
<thead>
<tr>
<th>Геометрия подшипника и режимные условия</th>
<th>Аналитические результаты</th>
<th>Численные и экспериментальные данные</th>
</tr>
</thead>
<tbody>
<tr>
<td>Радиальный подшипник: (r=2.4 \text{ см}, \ l=5.4 \text{ см}, h=16.9 \times 10^{-2} \text{ см}, P_L=10^5 \text{ Па})</td>
<td>(W_{\text{а}} = 78.7 \text{ Н (н=0.335, v=10500 rpm)})</td>
<td>(W_{\text{а}} = 84.3 \text{ Н (experiment)})</td>
</tr>
<tr>
<td></td>
<td>(W_{\text{р}} = 65.7 \text{ Н (н=0.5, v=4700 rpm)})</td>
<td>(W_{\text{р}} = 74.5 \text{ Н (experiment)})</td>
</tr>
<tr>
<td>Радиальный подшипник: (r=2.4 \text{ см}, \ l=5.4 \text{ см}, h=6.25 \times 10^{-2} \text{ см}, P_L=10^5 \text{ Па})</td>
<td>(W_{\text{а}} = 125.1 \text{ Н (н=0.335, v=4700 rpm)})</td>
<td>(W_{\text{а}} = 115.6 \text{ Н (experiment)})</td>
</tr>
<tr>
<td></td>
<td>(W_{\text{р}} = 244.3 \text{ Н (н=0.5, v=7400 rpm)})</td>
<td>(W_{\text{р}} = 236.2 \text{ Н (experiment)})</td>
</tr>
<tr>
<td>Радиальные статически подшипники: (r=1.6 \text{ см}, l=4.8 \text{ см} (А=1.5),) (a_r=0.75, d=0.1 \text{ см}, t=0.2, h=5 \times 10^{-2} \text{ см}, v=50000 \text{ rpm}, P_L=5 \times 10^5 \text{ Па},) (n_r=12) (2 rows x 6 outlets)</td>
<td>(W_{\text{а}} = 157 \text{ Н – стат. компонент})</td>
<td>(W_{\text{а}} = 184 \text{ Н})</td>
</tr>
<tr>
<td></td>
<td>(W_{\text{р}} = 221 \text{ Н – динам. компонент})</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(W_{\text{вн}} = 371 \text{ Н})</td>
<td></td>
</tr>
<tr>
<td>Радиальные статически подшипники: (r=1.6 \text{ см}, l=2.4 \text{ см} (А=0.8),) (a_r=0, d=0.1 \text{ см}, t=0.2, h=5 \times 10^{-2} \text{ см}, v=50000 \text{ rpm}, P_L=5 \times 10^5 \text{ Па},) (n_r=6) (1 row x 6 outlets)</td>
<td>(W_{\text{а}} = 106 \text{ Н – стат. компонент})</td>
<td>(W_{\text{а}} = 58 \text{ Н})</td>
</tr>
<tr>
<td></td>
<td>(W_{\text{р}} = 96 \text{ Н – динам. компонент})</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(W_{\text{вн}} = 202 \text{ Н})</td>
<td></td>
</tr>
<tr>
<td>Радиальные статически подшипники: (r=3.2 \text{ см}, l=9.6 \text{ см} (А=1.5),) (a_r=0.75, d=0.2 \text{ мм}, t=0.1, h=10 \times 10^{-2} \text{ см}, v=50000 \text{ rpm}, P_L=5 \times 10^5 \text{ Па},) (n_r=12) (2 rows x 6 outlets)</td>
<td>(W_{\text{а}} = 472 \text{ Н – стат. компонент})</td>
<td>(W_{\text{а}} = 324 \text{ Н})</td>
</tr>
<tr>
<td></td>
<td>(W_{\text{р}} = 423 \text{ Н – динам. компонент})</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(W_{\text{вн}} = 895 \text{ Н})</td>
<td></td>
</tr>
<tr>
<td>Радиальный лепестковый подшипник: (r=1.6 \text{ см}, l=4.8 \text{ см} (А=1.5),) (h=10 \times 10^{-2} \text{ см},) (c=0.5, n_r=4)</td>
<td>(W_{\text{а}} = 105 \text{ Н (P_L=10^5 \text{ Па}, c=0.1, v=50000 \text{ rpm})})</td>
<td>(W_{\text{а}} = 96 \text{ Н})</td>
</tr>
<tr>
<td></td>
<td>(W_{\text{р}} = 228 \text{ Н (P_L=10^5 \text{ Па}, c=0.2, v=50000 \text{ rpm})})</td>
<td>(W_{\text{р}} = 194 \text{ Н})</td>
</tr>
<tr>
<td></td>
<td>(W_{\text{вн}} = 403 \text{ Н (P_L=10^5 \text{ Па}, c=0.3, v=50000 \text{ rpm})})</td>
<td>(W_{\text{вн}} = 416 \text{ Н})</td>
</tr>
<tr>
<td></td>
<td>(W_{\text{вн}} = 343 \text{ Н (P_L=10^5 \text{ Па}, c=0.2, v=75000 \text{ rpm})})</td>
<td>(W_{\text{вн}} = 350 \text{ Н})</td>
</tr>
<tr>
<td></td>
<td>(W_{\text{вн}} = 375 \text{ Н (P_L=10^5 \text{ Па}, c=0.2, v=90000 \text{ rpm})})</td>
<td>(W_{\text{вн}} = 380 \text{ Н})</td>
</tr>
<tr>
<td>Осевые статически подшипники: (r=13 \text{ см}, r_{\text{вн}}=17 \text{ см} (B=2 \text{ см}),) (l=11.8 \text{ см}, h=12 \times 10^{-2} \text{ см}, n_r=4, P_L=10^5 \text{ Па})</td>
<td>(W_{\text{а}} = 4058 \text{ Н (n_r=4, d=0.4 мм, v=10 \text{ мм/мин})})</td>
<td>(W_{\text{а}} = 5816 \text{ Н})</td>
</tr>
<tr>
<td></td>
<td>(W_{\text{р}} = 9207 \text{ Н (n_r=4, d=1.4 мм, v=14 \text{ мм/мин})})</td>
<td>(W_{\text{р}} = 9464 \text{ Н})</td>
</tr>
<tr>
<td>Осевые лепестковые подшипники: (r=1.8 \text{ см}, r_{\text{вн}}=3.8 \text{ см} (r_{\text{вн}}=2.8 \text{ см}),) (l=22.5 \times 10^{-2} \text{ см},) (c=0.178, P_L=10^5 \text{ Па})</td>
<td>(W_{\text{а}} = 94 \text{ Н (n_r=6, v=30000 \text{ rpm})})</td>
<td>(W_{\text{а}} = 216 \text{ Н})</td>
</tr>
<tr>
<td></td>
<td>(W_{\text{р}} = 183 \text{ Н (n_r=6, v=50000 \text{ rpm})})</td>
<td>(W_{\text{р}} = 306 \text{ Н})</td>
</tr>
<tr>
<td></td>
<td>(W_{\text{вн}} = 75 \text{ Н (n_r=6, v=30000 \text{ rpm})})</td>
<td>(W_{\text{вн}} = 104 \text{ Н})</td>
</tr>
</tbody>
</table>

В источнике [5] сравниваются различные методики оценки несущей способности осевых ЛГП в зависимости от частоты вращения (рисунок 3).

Рисунок 3 – Зависимость экспериментальной относительной предельной несущей способности осевого ЛГП в зависимости от частоты вращения при различных вариантах вычисления.

Как следует из рисунка 3, в настоящее время имеются достаточно представительные методы расчета ЛГП. Однако последнее слово за экспериментом, определяющим настоящие ресурсы газодинамических подшипников и технологии их изготовления.
Раздел 1. Наземные транспортные средства, энергетические установки и двигатели.

Расчет влияния конструктивных факторов на виброустойчивость ротора на газодинамических подшипниках

Расчеты выполнены для турбохолодильника разработки ОАО НПО «Наука» для режимов, указанных в таблице 3.

<table>
<thead>
<tr>
<th>Внешний фактор</th>
<th>Характеристика внешнего фактора</th>
<th>Максимальное значение</th>
</tr>
</thead>
<tbody>
<tr>
<td>Синусоидальная вибрация</td>
<td>Диапазон частот, Гц</td>
<td>5...10</td>
</tr>
<tr>
<td></td>
<td>Амплитуда ускорения, м/с²</td>
<td>4,9</td>
</tr>
<tr>
<td></td>
<td>Амплитуда перемещения, мм</td>
<td>1,25</td>
</tr>
<tr>
<td>Удар многократный</td>
<td>Пиковое ударное ускорение, м/с²</td>
<td>9,8</td>
</tr>
<tr>
<td></td>
<td>Длительность действия, мс</td>
<td>20</td>
</tr>
<tr>
<td>Удар одиночный</td>
<td>Пиковое ударное ускорение, м/с²</td>
<td>147</td>
</tr>
<tr>
<td></td>
<td>Длительность действия, мс</td>
<td>15</td>
</tr>
</tbody>
</table>

Создана аналитическая модель опоры в программном комплексе ANSYS Mechanical, позволяющая проводить расчет критических частот с учетом особенностей данного типа опор с учетом внешних синусоидальных колебаний при жесткости пакета лепестков 200 кН/м и расчет траекторий центра вала для различных частот колебаний и внешних нагрузок (рисунок 4).

Рисунок 4 – Траектория центра вала для частоты 100 Гц и нагрузки 0,5g

Современные применения газодинамических опор в конструкциях высокооборотных лопаточных машин

1. Авиационные СКВ.

В США в течение 25 последних лет велись и ведутся работы по реализации газодинамических подшипников в агрегатах самолетов различного назначения.

В источнике [1] изложен обзор расчетных и экспериментальных работ по отработке лепестковых газодинамических подшипников турбомашин в СКВ на самолетах в течение последних 25 лет.

Из этих работ следует, что разработаны конструкции ЛГП для широкого спектра граж-
Вводная глава

Введение в турбомашинные системы для самолетов и вертолетов. Обзор существующих моделей. Описание технологий и материалов, используемых в производстве. Основные проблемы и перспективы развития.

1. Газотурбинные установки

В газотурбинных установках применяются компрессоры, турбины и газовые турбины. Описание конструкции и принципов работы. Описание различных типов установок, включая реактивные и турбореактивные.

2. Турбовинтовые установки

Турбовинтовые установки используются в военных и гражданских самолетах. Описание принципа работы и конструкции. Обзор различных типов и применений.

3. Турбовинтовые установки для вертолетов

Описание принципа работы и конструкции турбовинтовых установок для вертолетов. Обзор различных типов и применений.

4. Газотурбинные установки для авиации

Описание различных типов газотурбинных установок для авиации. Обзор различных видов и применений.

5. Турбовинтовые установки для авиации

Описание различных типов турбовинтовых установок для авиации. Обзор различных видов и применений.

6. Газотурбинные установки для вертолетов

Описание различных типов газотурбинных установок для вертолетов. Обзор различных видов и применений.

7. Турбовинтовые установки для вертолетов

Описание различных типов турбовинтовых установок для вертолетов. Обзор различных видов и применений.

8. Газотурбинные установки для гражданской авиации

Описание различных типов газотурбинных установок для гражданской авиации. Обзор различных видов и применений.

9. Турбовинтовые установки для гражданской авиации

Описание различных типов турбовинтовых установок для гражданской авиации. Обзор различных видов и применений.

Выводы

На основании проведенных исследований можно сделать следующие выводы:

- Описана технология производства газотурбинных и турбовинтовых установок.
- Описаны различные типы и применения установок.
- Приведены перспективы развития газотурбинных и турбовинтовых установок.

Источники:

1. [Источник 1]
2. [Источник 2]
3. [Источник 3]
Раздел 1. Наземные транспортные средства, энергетические установки и двигатели.

НПО «Наука».

3. С учетом зарубежного опыта применения газодинамических подшипников не только на пассажирских самолетах, но и на военных самолетах (F-14, F-16) следует начать подобные разработки агрегатов СКВ для боевых самолетов и вертолетов.

4. Перспективной работой по внедрению газодинамических подшипников является микрогазотурбинная установка мощностью 5 кВт для энергетики как альтернатива паротурбинной установке израильской фирмы «Ормат».

5. С учетом того факта, что высокотемпературное антифрикционное покрытие лепестков и вала с малыми коэффициентами трения уже работают в ряде зарубежных фирм, создание отечественного высокотемпературного антифрикционного покрытия с помощью ведущих химических институтов РАН – дело времени.

Литература

3. Low-friction wear-resistant coating for high-temperature foil bearings, report N.Y, 12205, USA
4. Технические справки и отчеты МГТУ «МАМИ» за 2010-2011 гг.
5. Ермилов Ю.И. Осевые лепестковые газодинамические подшипники. Диссертация на соискание ученой степени кандидата технических наук, 2008 г.

Анализ прочности рамы агрегата для перевозки длинномерных грузов при модификации геометрических параметров его элементов

Мишин П.П., к.т.н. доц. Осипов Н.Л., к.т.н. проф. Крамской Н.А.
Университет машиностроения
8 (495) 223-05-23, доб. 1457, MishinPP@yandex.ru, sopr@tami.ru

Аннотация. В работе рассмотрена задача прочностного анализа рамы перспективного транспортного средства для транспортировки длинномерных грузов. Предложены меры по модификации конструкции рамы. С учетом предложенных вариантов усовершенствования построена математическая модель и определены значения напряжений и прогибов в раме агрегата для всех рассмотренных случаев.

Ключевые слова: транспортное средство, рама, математическая модель, модификация

Потребности промышленности в перевозке грузов неуклонно возрастают, в связи с этим повышение эффективности грузоперевозок является одной из главных задач на современном этапе развития страны. Так, с увеличением применения неделимого промышленного оборудования, позволяющего резко сократить себестоимость и сроки производства, повысился интерес к транспортировке наряду с обычными еще и длинномерных грузов. В свою очередь полная стоимость перевозимого груза включает в себя расходы на транспортировку вместе со стоимостью его изготовленности, поэтому естественной необходимостью является сохранение издержек на доставку различных изделий.

Снижения затрат в этом случае можно добиться при проектировании транспортных средств, которые перевозят различные виды грузов, в том числе и специфических, по дорогам всех категорий. Особую важность представляет транспортировка грузов большой массы и габаритов, так как это наиболее затратный процесс и в материальном, и в техническом плане. В качестве таких грузов могут выступать ЛЭП, котельное оборудование, трансформаторы высокой мощности и т.п., а средствами доставки являются специальные транспортные средства, [1] (рисунок 1). При этом перевозка грузов может осуществляться как по дорогам общего, так и специального назначения с упроченным покрытием.

Принцип, согласно которому под отдельные типы грузов требуется разрабатывать и из-