Раздел 1. Наземные транспортные средства, энергетические установки и двигатели.

Измененный рабочей характеристикой в виде функции от параметра микрооптика, в качестве которого могут выступать дисперсии ординат микропрофиля дороги или вертикального ускорения центра масс автомобиля. Параметры, описывающие рабочую характеристику коэффициента поправки, найдены согласно методике оптимизации с регулируемыми параметрами [5].

Предложенный единый алгоритм управления кривыми моментами, подводимыми к колесам полноприводных автомобилей, требует для своей реализации значительного количества различных датчиков, однако современный уровень развития электронных элементов, их надежность и универсальность позволяет рассчитывать на их использование уже сегодня.

Поисковые исследования в данной области проведены по теме «Проведение проблемно-ориентированных исследований по разработке алгоритма управления мощностями, подводимыми к колесам полноприводных автотранспортных средств, в зависимости от условий движения» в рамках федеральной целевой программы «Научные и научно – педагогические кадры инновационной России» на 2009 – 2013 годы.

Выводы

Единый алгоритм управления кривыми моментами позволяет управлять трансмиссией многослойного автомобиля при обеспечении минимальных затрат мощности с сохранением высокой проходимости и управляемости автомобиля в различных дорожных условиях.

Алгоритм разрабатывался с учетом современного уровня развития электронных элементов, их надежности и универсальности. При наличии необходимых датчиков предлагаемый алгоритм может быть реализован в настоящее время с минимальными затратами на существующих автомобилях.

Литература


Методы получения и спектральный анализ вибрационных характеристик искусственных треков

к.т.н. доц. Подрубалов В.К., Подрубалов М.В.
Университет машиностроения
8(495)965-9129, podrubalov@bk.ru

Аннотация. В статье рассмотрены результаты расчетов характеристик кинематических возбуждений от профилей искусственных треков, которые должны применяться при оценке вибрации машин на соответствие стандартам. Показаны основные свойства этих треков. Выбраны наиболее представительные треки для осуществления расчетных и натурных экспериментов по совершенствованию систем вибросзащиты.

Ключевые слова: вибрация, искусственный трек, возбуждение, спектральная плотность, диапазон частот, вибрационная характеристика

Вибрация тракторов и самоходных машин, обусловленная кинематическим воздействи-
Из сказанного видно, что главным этапом здесь является экспериментальное определение параметров вибрационной характеристики машины с применением испытательного кода [2] (метода), использующего искусственные эталонные треки, которые вследствие своей неразрушимости после каждого проезда трактора обеспечивают длительное время воспроизводимость испытаний. Треки, назначенные для испытаний в нашем новом стандарте [2], были созданы в английском институте NIAE (british standard 4220) в начале 60-х годов прошлого века и в дальнейшем приняты как фонды для испытаний тракторов и самоходных машин в СТ ИСО 5008. Два трека имитируют просечную дорогу и вспаханное поле. Известно [5], что для построения профилей этих треков использованы образцы поверхностей, спектры которых огибают спектры микропрофилей дорог и агрофонов, обследованных в Англии и в одном из районов ФРГ. В [5] утверждается, что количество измерений было ограничено, вследствие чего их параметры статистически недостоверны. В то же время в этой работе приведены треки, которые в дальнейшем были введены в ГОСТ [4]. Принцип синтеза их характеристик, как заявляет автор, был другой: сначала проводилась оценка и обобщение параметров реальных фонов, а затем — получение искусственных ординат эталонных профилей через обратное преобразование Фурье исходного спектра.

При проведении исследований характеристик возбуждений от созданных на настоящем времени искусственных фонов (в том числе отечественных [4]), которые позволяют оценить общую картину по этому вопросу и подтвердить или опровергнуть рациональность выбора в [2] режимов для натурных испытаний тракторов, является весьма актуальным. Кроме того, наличие этих данных крайне важно для корректного задания функции цели при математическом моделировании и расчетах по оптимизации систем виброзащиты мобильных машин на стадиях их проектирования и модернизации.

При осуществлении сравнительного анализа характеристик треков сначала используем традиционный подход, алгоритм которого следующий: массив значений ординат микропрофиля - оценки дисперсии, корреляционной функции и спектральной плотности - коэффициенты аппроксимации - анализ. Полученные оценки указанных характеристик наиболее часто аппроксимировали связанными преобразованием Фурье выражениями:

$$ R(l) = \sigma^2 \cdot e^{-\alpha l} \cdot \cos(\beta l), $$

$$ S(\omega) = \sigma^2 \cdot \frac{2 \cdot \alpha}{\pi} \cdot \frac{\omega^2 + \alpha^2 + \beta^2}{(\omega^2 - \alpha^2 - \beta^2)^2 + 4 \alpha^2 \cdot \omega^2}, $$

где: $\omega$ - путевая частота, 1/м;

$\sigma$ - среднеквадратическое значение (СКЗ) ординат профиля пути, 10^{-2} м;

$$ \alpha = \frac{\beta}{\pi} \cdot \ln \left( \frac{\sigma^2}{R_{l_1}} \right) $$ - коэффициент, характеризующий интенсивность затухания корреляционной функции, 1/м;

$$ \beta = \frac{\pi}{2 \cdot l_1} $$ - коэффициент, характеризующий гармоническую составляющую корреляционной функции профиля, 1/м;
Дано: Наземные транспортные средства, энергетические установки и двигатели.

1. Абсцисса пересечения корреляционной функции с нулем, т. е. \( R(l_1) = \theta \);
2. Абсцисса первого отрицательного минимума корреляционной функции.

При произвольной постоянной скорости машины \( V \) выражения (1) и (2) рассчитываются при:

\[
\sigma_1^2 = \sigma_2^2 = \text{const}, \quad \alpha_1 = \alpha \cdot V, \quad \beta_1 = \beta \cdot V, \quad \omega_1 = \omega \cdot V.
\]  (3)

Таблица 1

<table>
<thead>
<tr>
<th>Стандарт</th>
<th>Трек</th>
<th>Скорость ( u ), м/с</th>
<th>Колея</th>
<th>СКЗ высоты неверностей ( \sigma ), м10–2</th>
<th>Параметры аппроксимации</th>
</tr>
</thead>
<tbody>
<tr>
<td>ГОСТ 12.2.002-91</td>
<td>Агрофон</td>
<td>2,22 (8)</td>
<td>Колеи совпадают</td>
<td>1,51</td>
<td>1,8</td>
</tr>
<tr>
<td></td>
<td>Дорога грунт.</td>
<td>4,17 (15)</td>
<td></td>
<td>2,1</td>
<td>0,26</td>
</tr>
<tr>
<td>ИСО 5008:2002</td>
<td>нервная колея</td>
<td>1,39 (5)</td>
<td>Л</td>
<td>5</td>
<td>0,5</td>
</tr>
<tr>
<td></td>
<td>Агрофон</td>
<td></td>
<td>П</td>
<td>4,66</td>
<td>0,25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Среднее</td>
<td>4,83</td>
<td>0,38</td>
</tr>
<tr>
<td></td>
<td>ровная колея</td>
<td>3,33 (12)</td>
<td>Л</td>
<td>1,8</td>
<td>0,24</td>
</tr>
<tr>
<td></td>
<td>Дорога</td>
<td></td>
<td>П</td>
<td>2,46</td>
<td>0,28</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Среднее</td>
<td>2,13</td>
<td>0,26</td>
</tr>
</tbody>
</table>

Анализ статистических параметров эталонных треков, вычисленных в работе [5] по формулам (1) и (2), показывает (таблица 1), что они имеют мало общего. Во-первых, в наших ГОСТ затруднительно заложить, что при натурных испытаниях машины или при расчетных экспериментах с применением исходных значений, на динамическую систему машины действуют одинаковые кинематические возбуждения по разным колеям, т. е. машина не будет испытывать поперечных колебаний, что не соответствует картине, наблюдаемой в реальной эксплуатации мобильных машин, а также требованиям ГОСТ и СТ ИСО [1, 3] по оценке горизонтальной вибрации. Потому весьма разнятся как регламентируемые стандартами скорости движения машин, так и сами параметры \( \sigma, \alpha, \beta, \alpha_1, \beta_1 \). Единственный случай – это практическое совпадение СКЗ высот неровностей \( \sigma \) и параметра \( \alpha \) для дороги ГОСТ и среднего значения ортотропных профилей правой и левой колей СТ ИСО.

Однако более чем 2-х кратная разница в параметре \( \beta \) профилей и существенное отклонение в скоростном режиме движения машины не даёт права говорить о какой-либо их эквивалентности. Т.е. общепринятый подход с использованием при анализе параметров аппроксимации по выражениям (1) и (2) не даёт значимых результатов.

Первоначальной характеристикой, отображающей уровень кинематического воздействия на машину, являются СКЗ высот неровностей профилей пути и воздействий от него в заданных диапазонах частот. Их оценки (рисунок 1, таблица 2) получены для различных (в том числе и регламентируемых) скоростей движения машины. Анализ проводился в наиболее опасном для оператора диапазоне частот 0-11,2 Гц. Он в соответствии со стандартами [1-4] разбивался на октавные диапазоны частот (ОДЧ): 0-0,7 Гц – факультативно; 0,7-1,4 Гц – среднегеометрическая частота (СГЧ) 1 Гц; 1,4-2,8 Гц – СГЧ 2 Гц; 2,8-5,6 Гц – СГЧ 4 Гц; 5,6-11,2 – СГЧ 8 Гц. Расчеты проведены:

1. Интегрированием в указанных выше диапазонах частот функций спектральных плотностей профилей фонов и их воздействий, полученных по формулам (1) – (3).
2. Интегрированием в тех же диапазонах частот спектральных плотностей эталонных фонов \((v=1 \text{ м/с})\) и воздействий от них, вычисленных по массивам ортотропных диапазонов, представленных в стандартах [2, 4]. Реализации для последующей статистической обработки формировались с использованием интерполяции кубическими сплайнами, применение которой имело целью увеличение количества точек в реализациях за счет введения промежуточных точек по длине шага квантования и тем самым улучшения оценок спектральных плотностей при использовании алгоритма быстрого преобразования Фурье (БПФ).
Рисунок 1 - Нормированные спектральные плотности воздействий по перемещениям от эталонных треков

Спектральный анализ воздействий от искусственных эталонных профилей по перемещениям (рисунок 1) показывает, что основная доля дисперсии нормированных машинных спектров, полученных по массивам ординат, лежит в диапазоне до 2 Гц. Небольшое отличие наблюдается лишь у спектров эталонного агрофона ГОСТ (они более растянуты), причем как на регламентируемой скорости 2,22 м/с (8 км/ч), так и 3,33 м/с (12 км/ч).

Они, так же как и реальные с.х. фонды [6], не имеют смещения каких-либо выраженных максимумов с увеличением скорости, что предполагает формулы (1)-(3). Это говорит об ограниченности применения этих формул для реализаций, заданных массивами ординат профилей пути даже подверженных предварительной обработке.

Таблица 2

<table>
<thead>
<tr>
<th>Стандарт</th>
<th>Трек</th>
<th>Скорость (м/с)</th>
<th>Колея</th>
<th>Диапазон частот, Гц</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0-0,7</td>
</tr>
<tr>
<td>ГОСТ 12.2.002-91 (числитель – нормирующие значения)</td>
<td>Агрофон</td>
<td>1,0</td>
<td>Колен совп.</td>
<td>0,61</td>
</tr>
<tr>
<td></td>
<td>Дорога</td>
<td>1,0</td>
<td>Колен совп.</td>
<td>1,18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,43</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,06</td>
</tr>
</tbody>
</table>

306 Известия МГТУ «МАМИ» № 2(14), 2012, т. 1
### ГОСТ 12.2.002-91

<table>
<thead>
<tr>
<th>Агрофон</th>
<th>1,0</th>
<th>Колен совп.</th>
<th>1,3</th>
<th>0,55</th>
<th>0,39</th>
<th>0,27</th>
<th>0,19</th>
<th>1,5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1,18</td>
<td>0,55</td>
<td>0,38</td>
<td>0,22</td>
<td>0,03</td>
<td>1,37</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,03</td>
<td>0,75</td>
<td>0,58</td>
<td>0,41</td>
<td>0,29</td>
<td>1,48</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,91</td>
<td>0,73</td>
<td>0,57</td>
<td>0,41</td>
<td>0,25</td>
<td>1,37</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,22</td>
<td>2,06</td>
<td>0,29</td>
<td>0,2</td>
<td>0,14</td>
<td>0,1</td>
<td>2,1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,06</td>
<td>0,29</td>
<td>0,21</td>
<td>0,11</td>
<td>0,097</td>
<td>2,1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,9</td>
<td>0,69</td>
<td>0,43</td>
<td>0,30</td>
<td>0,21</td>
<td>2,09</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,86</td>
<td>0,8</td>
<td>0,46</td>
<td>0,31</td>
<td>0,21</td>
<td>2,1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Дорога грунт.</th>
<th>1,0</th>
<th>Колен совп.</th>
<th>1,9</th>
<th>0,69</th>
<th>0,43</th>
<th>0,30</th>
<th>0,21</th>
<th>2,09</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1,86</td>
<td>0,8</td>
<td>0,46</td>
<td>0,31</td>
<td>0,21</td>
<td>2,1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4,17</td>
<td>1,9</td>
<td>0,69</td>
<td>0,43</td>
<td>0,30</td>
<td>0,21</td>
<td>2,09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,86</td>
<td>0,8</td>
<td>0,46</td>
<td>0,31</td>
<td>0,21</td>
<td>2,1</td>
<td></td>
</tr>
</tbody>
</table>

### ИСО 5008:2002

<table>
<thead>
<tr>
<th>неровная колея Агрофон</th>
<th>1,0</th>
<th>Л</th>
<th>4,82</th>
<th>0,74</th>
<th>0,52</th>
<th>0,37</th>
<th>0,26</th>
<th>4,65</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>П</td>
<td>5,19</td>
<td>1,64</td>
<td>0,83</td>
<td>0,46</td>
<td>0,19</td>
<td>5,52</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4,57</td>
<td>0,63</td>
<td>0,44</td>
<td>0,31</td>
<td>0,22</td>
<td>4,6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4,78</td>
<td>1,41</td>
<td>0,74</td>
<td>0,37</td>
<td>0,11</td>
<td>5,05</td>
</tr>
<tr>
<td></td>
<td>1,39</td>
<td>Л</td>
<td>4,74</td>
<td>1,13</td>
<td>0,79</td>
<td>0,56</td>
<td>0,40</td>
<td>4,98</td>
</tr>
<tr>
<td></td>
<td></td>
<td>П</td>
<td>4,93</td>
<td>2,16</td>
<td>1,11</td>
<td>0,61</td>
<td>0,29</td>
<td>5,52</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4,54</td>
<td>0,74</td>
<td>0,52</td>
<td>0,37</td>
<td>0,26</td>
<td>4,65</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4,7</td>
<td>1,43</td>
<td>1,08</td>
<td>0,52</td>
<td>0,21</td>
<td>5,05</td>
</tr>
<tr>
<td>ровная колея Дорога</td>
<td>1,0</td>
<td>Л</td>
<td>1,77</td>
<td>0,24</td>
<td>0,17</td>
<td>0,12</td>
<td>0,08</td>
<td>1,8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>П</td>
<td>2,04</td>
<td>0,28</td>
<td>0,24</td>
<td>0,11</td>
<td>0,03</td>
<td>2,07</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2,41</td>
<td>0,35</td>
<td>0,25</td>
<td>0,18</td>
<td>0,12</td>
<td>2,46</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2,64</td>
<td>0,27</td>
<td>0,24</td>
<td>0,1</td>
<td>0,02</td>
<td>2,67</td>
</tr>
<tr>
<td></td>
<td>3,33</td>
<td>Л</td>
<td>1,69</td>
<td>0,45</td>
<td>0,31</td>
<td>0,22</td>
<td>0,15</td>
<td>1,8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>П</td>
<td>1,91</td>
<td>0,63</td>
<td>0,4</td>
<td>0,23</td>
<td>0,23</td>
<td>2,07</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2,29</td>
<td>0,63</td>
<td>0,45</td>
<td>0,32</td>
<td>0,23</td>
<td>2,45</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2,55</td>
<td>0,57</td>
<td>0,39</td>
<td>0,26</td>
<td>0,22</td>
<td>2,67</td>
</tr>
</tbody>
</table>

Сравнение расчетных оценок СКЗ ординат искусственных треков $V = 1$ м/с и СКЗ воздействий от треков по перемещению при $V = 1$ м/с в ОДЧ (таблица 2) показывает следующее:

- метод получения анализируемых параметров с использованием предварительной аппроксимации по формулам (1)-(3) и метода прямого получения этих параметров после вычисления оценки спектральной плотности БПФ и ее интегрирования дают близкие оценки СКЗ по всем диапазонам частот только для обоих фонов ГОСТ и в меньшей степени дороги (ровной колеи) СТ ИСО. Худшая сходимость (отличие до 2,3 раза) у СКЗ агрофона и его воздействий СТ ИСО в диапазонах 0,7-1,4, 1,4-2,8, 2,8-5,6 Гц. Это указывает на необходимость использования машинных оценок спектров воздействий как более корректных;

- СКЗ ординат воздействий от трека агрофона ГОСТ при $V = 2,22$ м/с в главных по воздействию на человека четырех ОДЧ с СГЧ 2, 4, 8 Гц достаточно близки к аналогичным параметрам агрофона СТ ИСО при $V = 1$ м/с. Однако при таком сравнении в ОДЧ с СГЧ 1 Гц разница СКЗ машинных значений доходит до 2,2 раз;

- весьма мало отличаются (до 1,27 раза) СКЗ воздействий от неровностей эталонного трека грунтовой дороги ГОСТ ($V = 4,17$ м/с; 15 км/ч) и дороги (ровной колеи) СТ ИСО ($V = 3,33$ м/с; 12 км/ч). Учитывая допуск нашего стандарта на скорость движения машины при испытаниях ± 2 км/ч можно заключить, что при таком сравнении эти два стандартных режима будут наиболее близки друг к другу.

Таким образом, анализ таблицы 2 показывает, что искусственные треки ГОСТ и СТ ИСО являются по уровню СКЗ ординат профилей в первых четырех ОДЧ во многих случаях несравнимыми между собой. В то же время видно, что если рассматривать одну какую-либо колею искусственного трека СТ ИСО или ГОСТ, то можно подобрать скорость движения машины, при которой СКЗ ординат воздействий по перемещению в ОДЧ, полученные по машинным спектрам, практически совпадут или будут близки параметрам другой колеи и другого фона этих же стандартов.

Из расчетов (таблица 2) видно происхождение СКЗ высот неровностей «типовых микропрофилей» ГОСТ 12.2.002-91 [4], по которым должны нормироваться виброускорения в
Раздел 1. Наземные транспортные средства, энергетические установки и двигатели.

ОДЧ на сиденье оператора при испытаниях тракторов и др. машин на естественных фонах в типичных условиях эксплуатации, допускаемым в стандарте. Эти параметры совпадают точ но или практически (до 4%) с аналогичными значениями возбуждений для эталонных фонов этого же стандарта (агрофона при $V = 2,22$ м/с и грунтовой дороги при $V = 4,17$ м/с), вычисленными по аппроксимационным выражениям (1) – (3). В то же время становится очевидным, что в стандарте была допущена принципиальная методологическая ошибка, поскольку он предписывал проводить указанную нормировку СК3 ускорений, полученных при испытаниях, используя СК3 ординат замеренного реального профиля в ОДЧ без учета скорости испытываемой машины, т.е. без преобразования его в воздействие.

Полученные результаты исследований (рисунок 1, таблица 2) позволили определить качественную и количественную характеристики возбуждений от треков и могут служить базой при формировании функции спектральной плотности входа на динамическую систему "местность-машина" при спектральном методе оценки ее выбросогруженности на стадии проектирования. Однако в сравнении с оцениваемыми стандартами [1, 4] параметрами (уровнями СК3 виброускорений на сиденье оператора и руле) такие функции имеют другую размерность – перемещение. Поэтому для натурных испытаний и теоретических исследований по оценке вибрационных характеристик мобильных машин предлагается использовать спектральную плотность возбуждений по ускорению от профиля пути, а также ее СК3 в ОДЧ. Физическая сущность такого подхода хорошо интерпретируется картиной равномерного движения твердого тела без отрыва по профилю. При равенстве квадрата модуля частотной характеристики тела единице на выходе этой динамической системы мы будем получать собственно спектральную плотность возбуждения по ускорению от профиля пути.

На рисунке 2 представлены рассчитанные по массивам ордиат нормированные спектральные плотности воздействий по ускорениям из изучаемых эталонных треков с регламентированными стандартами скоростями движения машины. Расчеть сил спектров и их нормирование проведены в первых 4-х ОДЧ (до 11,2 Гц).

Из графиков видно, что спектры воздействий по ускорению от эталонных фонов ГОСТ ($V = 2,22$ м/с - агрофон, $V = 4,17$ м/с - дорога) и СТ ИСО ($V = 3,33$ м/с - дорога) имеют монотонный практически линейный рост. Если нанести эти кривые на один график, то они будут весьма близки друг к другу. Это говорит о том, что эти возбуждения в качественном отношении к динамической системе машины практически одинаковы.

Иная картина у спектров воздействий от колей от агрофона СТ ИСО при $V = 1,39$ м/с. В ОДЧ с СГЧ 2, 4 и 8 Гц (1,4-11,2 Гц) они имеют приближительно постоянный (ступенчато) характер, т.е. их можно классифицировать как «бельй шум по ускорению». Здесь нужно заметить, что их уровень в диапазоне частот 1-8 Гц существенно превышает значения параметров воздействий от других треков.

Для получения численных оценок уровня возбуждения на динамическую систему машины, движущейся по искусственным эталонным трекам с различной скоростью, было проведено интегрирование нормированных спектров воздействий (рисунок 2) в ОДЧ с последующим вычислением СК3 воздействий по ускорению (таблица 3).

Расчетные данные подтверждают качественную картину, полученную для воздействий от эталонных фонов с помощью спектрального анализа. Так, из таблица 1 видно, что уровень воздействий по ускорению от профилей левой, правой колей и их среднего значения ровной колей (догоги) СТ ИСО при скорости машины $V = 3,33$ м/с (12 км/ч) весьма близки (отличие до 1,2-1,3 раза) к СК3 воздействий по ускорению от искусственного трека, имитирующего грунтовую дорогу ГОСТ при регламентируемых скоростях $V = 3,61$ м/с (13 км/ч) и $V = 4,17$ м/с (15 км/ч). Причем это наблюдается как для ОДЧ, так и в суммарном диапазоне 0-11,2 Гц. Несколько большие численные различия по оценкам СКЗ по отношению к указанным выше у воздействий по ускорениям от агрофона ГОСТ при $V = 2,22$ м/с (8 км/ч). Наибольшая разница видна в 3-ем ОДЧ (2,8-5,6 Гц), где она достигает 1,45 раза.

Применение предложенного метода спектрального анализа возбуждений по ускорению позволило выявить для треков теоретически возможный уровень виброускорений возбужде-
Раздел 1. Наземные транспортные средства, энергетические установки и двигатели.

Ний в каждом ОДЧ, т.е. определить вибрационную характеристику трека по аналогии с характеристикой для испытываемой машины по новому стандарту [2]. При этом легко поддаются сравнению (таблица 3) данные по воздействию по разным колеям треков ИСО (отличие до 50%), изменению скорости при испытаниях машины хотя бы на 1 км/ч по отношению за данной кодом испытаний (до 19% – см. агрофон \( v' = 2.2 \) и \( 2.5 \) м/с).

![Graph 1](image1)

- левая колея; --- правая колея СТ ИСО 5008 – дорога, \( v = 3.33 \) м/с;
- ГОСТ 12.2.002-91 – дорога, \( v = 4.17 \) м/с (1)

![Graph 2](image2)

- левая колея; --- правая колея СТ ИСО 5008 – агрофон, \( v = 1.39 \) м/с;
- ГОСТ 12.2.002-91 – агрофон, \( v = 2.22 \) м/с (2)

Рисунок 2 - Нормированные спектральные плотности воздействий по ускорениям от эталонных треков

Таблица 3

| СКЗ воздействий по ускорению от профилей эталонных треков, м/с² |
|------------------|------|----------------|----------------|----------------|----------------|----------------|----------------|
| Стандарт         | Трек | Скорость м/с | Колея | Диапазоны частот, Гц |
|                  |      |              |      | 0-0,7 | 0,7-1,4 | 1,4-2,8 | 2,8-5,6 | 5,6-11 | 11-12 |
| ГОСТ 12.2.019-91 |      |              |      |       |         |         |         |         |       |
| ИСО 2631:1979    |      |              |      |       |         |         |         |         |       |
| ГОСТ 12.2.002-91 |      |              |      |       |         |         |         |         |       |
| Агрофон          | 1,0  | Колеи совп.  |      | 0,13  | 0,3    | 0,73    | 1,2     | 0,29    | 1,47   |
|                  | 2,22 |              |      | 0,16  | 0,41   | 1,09    | 2,87    | 5,92    | 6,69   |
|                  | 2,5  |              |      | 0,16  | 0,44   | 1,14    | 3,07    | 7,04    | 7,78   |
|                  | 2,78 |              |      | 0,15  | 0,45   | 1,19    | 3,24    | 7,9     | 8,63   |

Известия МГТУ «МАМИ» № 2(14), 2012, т. 1 309
<table>
<thead>
<tr>
<th>Грунтовая дорога</th>
<th>1,0</th>
<th>0,08</th>
<th>0,16</th>
<th>0,4</th>
<th>0,44</th>
<th>0,2</th>
<th>0,65</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,61</td>
<td>0,18</td>
<td>0,33</td>
<td>0,85</td>
<td>1,94</td>
<td>5,41</td>
<td>5,82</td>
<td></td>
</tr>
<tr>
<td>4,17</td>
<td>0,21</td>
<td>0,36</td>
<td>0,92</td>
<td>2,09</td>
<td>5,87</td>
<td>6,31</td>
<td></td>
</tr>
<tr>
<td>4,72</td>
<td>0,22</td>
<td>0,4</td>
<td>0,98</td>
<td>2,21</td>
<td>6,36</td>
<td>6,81</td>
<td></td>
</tr>
<tr>
<td>Неровная колея (агрофон)</td>
<td>1,0</td>
<td>0,4</td>
<td>0,77</td>
<td>1,46</td>
<td>2,74</td>
<td>5,20</td>
<td>6,11</td>
</tr>
<tr>
<td></td>
<td>П</td>
<td>0,31</td>
<td>0,69</td>
<td>1,2</td>
<td>2,21</td>
<td>2,33</td>
<td>3,51</td>
</tr>
<tr>
<td></td>
<td>Сред</td>
<td>0,35</td>
<td>0,73</td>
<td>1,33</td>
<td>2,47</td>
<td>3,77</td>
<td>4,81</td>
</tr>
<tr>
<td>1,39</td>
<td>Л</td>
<td>0,41</td>
<td>1,08</td>
<td>1,92</td>
<td>4,07</td>
<td>6,62</td>
<td>8,07</td>
</tr>
<tr>
<td></td>
<td>П</td>
<td>0,28</td>
<td>0,91</td>
<td>1,66</td>
<td>3,32</td>
<td>4,5</td>
<td>5,9</td>
</tr>
<tr>
<td></td>
<td>Сред</td>
<td>0,35</td>
<td>0,99</td>
<td>1,79</td>
<td>3,69</td>
<td>5,56</td>
<td>6,98</td>
</tr>
<tr>
<td>1,0</td>
<td>Л</td>
<td>0,08</td>
<td>0,16</td>
<td>0,5</td>
<td>0,43</td>
<td>0,83</td>
<td>1,07</td>
</tr>
<tr>
<td></td>
<td>П</td>
<td>0,07</td>
<td>0,17</td>
<td>0,47</td>
<td>0,38</td>
<td>0,7</td>
<td>0,93</td>
</tr>
<tr>
<td></td>
<td>Сред</td>
<td>0,08</td>
<td>0,16</td>
<td>0,48</td>
<td>0,41</td>
<td>0,76</td>
<td>1</td>
</tr>
<tr>
<td>3,33</td>
<td>Л</td>
<td>0,16</td>
<td>0,29</td>
<td>0,76</td>
<td>1,91</td>
<td>6,19</td>
<td>6,53</td>
</tr>
<tr>
<td></td>
<td>П</td>
<td>0,16</td>
<td>0,31</td>
<td>0,65</td>
<td>2,06</td>
<td>5,78</td>
<td>6,18</td>
</tr>
<tr>
<td></td>
<td>Сред</td>
<td>0,16</td>
<td>0,3</td>
<td>0,71</td>
<td>1,98</td>
<td>5,98</td>
<td>6,35</td>
</tr>
</tbody>
</table>

Сопоставление полученных оценок возбуждений по ускорению (таблица 3) с нормативами допускаемых вертикальных ускорений на сиденье оператора для колесных тракторов показывает, что они для ОДЧ 0,7-1,4 Гц и 1,4-2,8 Гц меньше или практически им равны. Т.е. если трактор был бы твердым телом, то нормативы по вибрации во 2-ом ОДЧ выполнялись. На практике же снижение вибрации в именно этом ОДЧ (наряду с 3-им) является наиболее трудной задачей при использовании в системе виброзащиты толькошин (основной источник большой вибрации в этих ОДЧ) и подвески сиденья.

Таким образом, спектральный анализ и примененные методы представления функций возбуждения динамической системы машины от искусственных треков позволили сформировать их вибрационные характеристики, которые можно использовать при математическом моделировании вибрации мобильных машин.

Полученная картина оценок параметров возбуждений по ускорениям от треков говорит о практической идентичности в качественном и количественном отношениях (по вертикальной вибрации) треков ГОСТ 12.2.002-91 и трека ровной колеи (дороги) СТ ИСО 5008. Поэтому выбор одного из этих треков для формирования функции цели при оптимизации системы виброзащиты машин в смысле представительности является для проектировщика более предпочтительным, так как существенно уменьшает объем расчетов. Оценка конечных результатов натурных и расчетных экспериментов по ГОСТ [1, 2] благодаря предложенной методике получения вибрационных характеристик может быть легко пересчитана для любого трека, включая трек неровной колеи (агрофона) СТ ИСО.

**Литература**

5. Арутюнян В.С. Обоснование параметров и разработка конструкции типового трека для испытания колесных сельскохозяйственных тракторов по оценке вибрации. Диссертация на соискание ученой степени к-та техн. наук. Ереван, 1983, 212 с.