Раздел 3. Естественные науки.

Численное решение задачи о концентрации напряжений для случая трехслойной упругой плоскости с двумя одинаковыми вертикально расположеными круговыми отверстиями при поперечном сжатии

к.т.н. доц. Михайлова В.Л., д.т.н. проф. Сухомлинов Л.Г., Мазин В.А.
Университет машиностроения, Кубанский государственный университет
8(495)223-05-23, доб. 1318

Аннотация. Излагаются результаты по распределению напряжений в поперечном сжимаемой трехслойной упругой плоскости с двумя одинаковыми вертикально расположенными круговыми отверстиями, полученные с применением вариационно-разностной процедуры численного решения задач плоской теории упругости для прямоугольных областей с отверстиями. Дается оценка влияния упругих постоянных слоев на уровень напряжений вокруг отверстий.

Ключевые слова: поперечное сжатие трехслойной упругой плоскости с двумя отверстиями, напряжения вокруг кругового отверстия.

Решению задачи статики плоской теории упругости о концентрации напряжений в однородных телах, имеющих всевозможного рода вырезы, отверстия и включения, посвящена обширная литература (см. [1]). На этом фоне в значительной мере не исследованными представляются вопросы концентрации напряжений в таких неоднородных объектах, как тела слоистой структуры, имеющие отверстия и включения. Из решенных здесь отметим, в частности, задачи о концентрации напряжений в двухслойных упругих средах с дефектами типа щелей и включений на межслойной границе [2, 3]. Укажем, кроме того, на работы авторов [4, 5], где с использованием вариационно-разностной процедуры [6] выполнены решения задач о концентрации напряжений применительно к случаю ослабленной круговой отверстиям двухслойной упругой полуплоскости в ситуациях продольного растяжения и поперечного сжатия, а также – на работу [7], где аналогичным образом осуществлено решение применительно к случаю продольно растягиваемой трехслойной упругой плоскости с двумя одинаковыми вертикально расположенными во втором слое круговыми отверстиями. В настоящей статье также трехслойная плоскость, что и в работе [7], рассматривается в ситуации поперечного сжатия. Численное решение соответствующей задачи осуществляется с применением вариационно-разностной модели, описанной в работе [7].

При численном моделировании вместо бесконечно протяженного объекта, каким является упомянутая поперечно сжимаемая (равномерно распределенной нагрузкой с интенсивностью п) трехслойная плоскость, рассматриваем конечную прямоугольную область с размерами, многократно превышающими радиус отверстия. Соответствующая расчетная схема представлена на рисунке 1.

При этом имеется в виду, что а >> Р, d >> Р (при расчетах принято a = d = 10R). Продольные сжимающие нагрузки с интенсивностями q(1), q(2) и q(3) = q(1) предполагаются равномерно распределенными по торцам соответствующих слоев. Считаем, что материалы первого и третьего слоев одинаковы и что отверстия расположены симметрично по отношению к средней линии второго слоя. Считаем также, что в рамках принятой схемы нагрузженния в каждом из слоев рассматриваемой трехслойной плоскости на бесконечности реализуется состояние однородной деформации. При этом полагаем, что продольные деформации εхх на бесконечности настолько, что можно принять εхх = 0.

С учетом симметрии принятой расчетной схемы трехслойной плоскости относительно средней линии второго слоя расчет нагрузок, обеспечивающих указанное однородное деформированное состояние в слоях на бесконечности, выполняем, рассматривая вспомогательную расчетную схему в виде соответствующего двухслойного пакета (рисунок 2) в ситуации поперечно-продольного сжатия нагрузками p, q(1) и q(2).

294 Известия МГТУ «МАМИ» № 2(14), 2012, т. 2
Рисунок 1 – Схема поперечно сжимаемой трехслойной плоскости, ослабленной двумя одинаковыми круговыми отверстиями

Рисунок 2 – Двухслойный пакет в ситуации поперечно-продольного сжатия

Введем обозначения $E^{(k)}$, $\nu^{(k)}$ ($k = 1, 2$) для модулей Юнга и коэффициентов Пуассона материалов первого и второго слоя. С учетом этого физические соотношения плоской задачи теории упругости, связывающие напряжения с деформациями в каждом из этих слоев, запишем в виде:

$$
\sigma_{xx}^{(k)} = \lambda_{1}^{(k)} \varepsilon_{xx}^{(k)} + \lambda_{2}^{(k)} \varepsilon_{yy}^{(k)},
$$

$$
\sigma_{yy}^{(k)} = \lambda_{2}^{(k)} \varepsilon_{xx}^{(k)} + \lambda_{1}^{(k)} \varepsilon_{yy}^{(k)},
$$

$$
\sigma_{xy}^{(k)} = 2G^{(k)} \varepsilon_{xy}^{(k)}, \quad (k = 1, 2).
$$

Коэффициенты $G^{(k)}$, $\lambda_{1}^{(k)}$, $\lambda_{2}^{(k)}$ линейных зависимостей (1) выражаются через упругие постоянные $E^{(k)}$ и $\nu^{(k)}$ согласно следующей схеме:
1) \(G^{(k)} = 0.5 E^{(k)} \left(\frac{1 + \nu^{(k)}}{1 - (\nu^{(k)})^2} \right) \);

2) в случае плоского напряженного состояния
 \[\lambda_1^{(k)} = E^{(k)} \left[\frac{1}{1 - (\nu^{(k)})^2} \right], \quad \lambda_2^{(k)} = \nu^{(k)} \lambda_1^{(k)}; \]

3) в случае плоского деформированного состояния
 \[\lambda_1^{(k)} = 2G^{(k)} + \lambda^{(k)}, \quad \lambda_2^{(k)} = \lambda^{(k)}, \]
 где: \(\lambda^{(k)} = \nu^{(k)} E^{(k)} / [(1 + \nu^{(k)})(1 - 2\nu^{(k)})] \).

В соответствии с принятыми условиями нагружения и деформирования рассматриваемого двухслойного пакета должно быть:
 \[\varepsilon_{xx}^{(i)} = \varepsilon_{yy}^{(i)} = 0, \quad \varepsilon_{xy}^{(i)} = 0, \quad \sigma_{xx}^{(i)} = \sigma_{yy}^{(i)} = 0, \quad \sigma_{xy}^{(i)} = 0, \quad \sigma_{xx}^{(i)} = q_{(1)}, \quad \sigma_{yy}^{(i)} = q_{(2)}. \]

Считая заданной величину \(p \), с использованием равенств (1), (3), (5), получаем:
 \[q_{(1)} = p \lambda_2^{(i)} / \lambda_1^{(i)}, \quad q_{(2)} = p \lambda_2^{(i)} / \lambda_1^{(i)}; \]

Настройка дискретной модели, описанной в работе [7], на интересующий нас случай поперечного сжатия ослабленной двумя круговыми отверстиями трехслойной плоскости осуществляется путем включения в программу расчета нагрузки \(p \), а также нагрузок \(q_{(1)} \) и \(q_{(2)} \), вычисляемых по формулам (6). Как и в [7], все расчеты приводим в предположении, что \(b = 1.25 R \), \(e = 1.2 R \) и что исследуемая трехслойная среда находится в состоянии плоской деформации.

Тестирование окончательно сформированной вычислительной модели осуществляем следующим образом. Полагаем (на программном уровне), что параметры упругости слоев рассматриваемой прямоугольной области имеют одинаковые значения и что \(q_{(1)} = q_{(2)} = 0 \). Тем самым приходим к случаю сжимаемой в вертикальном направлении (нагрузкой \(p \)) однородной упругой плоскости с двумя одинаковыми вертикально расположенными отверстиями. Результаты численного моделирования для данного (тестового) случая в виде зависимости окружного напряжения \(\sigma_\theta \) на кромке отверстия от угла \(\theta \) представлены (сплошной линией) на рисунке 3. Здесь же для сравнения представлены (точками) результаты приближенного аналитического решения А.С. Космодаманского [1].

Убедившись на основе выполненного сравнения в способности сформированной модели давать надежные результаты относительно рассмотреваемого типа задач о концентрации напряжений, приступаем к исследованию (с использованием этой модели) заявленного случая поперечного сжатия трехслойной плоскости с двумя отверстиями.

На рисунке 4 представлены полученные численным моделированием результаты в виде кривых распределения напряжений по контуру отверстия в зависимости от значений упругих постоянных слоев.

Пунктиром выделена зависимость, относящаяся к случаю однородной плоскости \((E^{(2)}/E^{(1)} = 1, \nu^{(1)} = \nu^{(2)} = 0.3) \). Кривые 1, 2, 3, 5, 6, 7 получены при задании значений параметров \(E^{(2)}/E^{(1)}, \nu^{(1)}, \nu^{(2)} \) в виде \((10; 0.45; 0.1), (2; 0.45; 0.1), (0.1; 0.45; 0.1), (0.1; 0.1; 0.45), (1.1; 0.1; 0.45).\)
(2; 0,1; 0,45), (10; 0,1; 0,45), соответственно.

Рисунок 3 – Результаты численного моделирования в сравнении с аналитическим решением А.С. Космодамианского

Рисунок 4 – Распределение напряжений по контуру отверстия в зависимости от значений упругих постоянных слоев

При анализе результатов, представленных на рисунке 4, обнаруживается эффект перехода (при значениях $\nu^{(2)}$, приближающихся к 0,45) положения максимума (по абсолютной величине) напряжений на контуре отверстия из зоны $60^\circ < \theta < 100^\circ$ в точку с угловой координатой $\theta = 180^\circ$ при одновременном увеличении значения этого максимума (см. кривые 3, 4, 5). Подобный эффект существенным образом ограничивает возможности по снижению уровня напряжений на кромке отверстия в данной ситуации. Наиболее оптимальными при этом оказываются варианты 3 и 5. Следует отметить, что при выборе этих вариантов сдвиговые напряжения σ_{xy} на межслойной границе (вблизи отверстия), как показывают расчеты, соответственно уменьшаются в 2,2 раза и увеличиваются в 1,2 раза по сравнению с однородным случаем.
Что касается точек рассматриваемой трехслойной области, достаточно удаленных от отверстий (на расстоянии более $8R$), то получаемые численным моделированием значения напряжений и деформаций в этих точках оказываются в хорошем согласовании со значениями, полученными по формулам (2)-(7). Это подтверждает приемлемость принятой при моделировании расчетной схемы, в соответствии с которой исходная бесконечно протяженная область заменяется конечной прямоугольной областью с размерами $a = d = 10R$.

В качестве общего вывода по выполненном исследованию отметим, что проведенный анализ позволил дать оценку влияния слоистой структуры поперечно сжимаемой плоскости на характер распределения напряжений вокруг имеющихся в ней двух одинаковых отверстий. Более того, установлена возможность снижения уровня указанных напряжений при надлежащем выборе характеристик слоев.

Литература

Анализ и синтез робастного управления для линейных систем двойного демпфирования

Тринджук В.А., к.ф.-м.н. доц. Кийко Г.И.
Университет машиностроения
8 (967) 008-23-55, trindjukvladimir@mail.ru, 8 (495) 527-34-75

Аннотация. В статье изложен способ построения робастного управления подвеской автомобиля при наличии интервальной неопределенности массы груза автомобиля и массы водителя, а также невозможности измерения отклонения кузова автомобиля и кресла водителя от своих состояний покоя. Приведено наглядное обоснование актуальности применения синтезированного робастного управления по сравнению с другими по качеству переходных процессов.

Ключевые слова: робастное управление, интервальная неопределенность параметров, подвеска автомобиля.

Робастные системы и робастные устройства значительно увеличивают надежность и устойчивость технических комплексов. Одним из подходов к созданию живучих функциональных узлов может стать поиск решений, обладающих нулевой чувствительностью выход-