DOI: 10.26442/2075-082X_14.3.84-86

Ингибиторы кальциневрина и артериальная гипертензия у реципиентов внутренних органов

Е.Д.Космачева 1,2 , С.М.Мартиросян 1,2 , М.Х.Лепшокова 1,2 , А.Э.Бабич $^{\boxtimes 1,2}$

¹ФГБОУ ВО «Кубанский государственный медицинский университет» Минздрава России. 350063, Россия, Краснодар, ул. Седина, д. 4;

²ГБУЗ «НИИ-Краевая клиническая больница №1 им. проф. С.В.Очаповского» Минздрава Краснодарского края. 350029, Россия, Краснодар, ул. 1 Мая, д. 16 □anna-babich1@yandex.ru

Артериальная гипертензия является доказанным фактором риска сердечно-сосудистых осложнений. С введением в схемы лечения ингибиторов кальциневрина артериальная гипертензия регистрируется у 50–80% реципиентов внутренних органов. Мы обобщили основные механизмы, участвующие в генезе индуцированной ингибиторами кальциневрина артериальной гипертензии: нарушение функции почек, эндотелиальная дисфункция, активация симпатической и ренин-ангиотензин-альдостероновой систем, усиление синтеза сосудосуживающих веществ, активация Na+/Cl-котранспортера. Акцентируется внимание на дозозависимости повышения артериального давления и необходимости дальнейшего изучения интенсивности прогипертензивного действия различных ингибиторов кальциневрина.

Ключевые слова: трансплантация, артериальная гипертензия, ингибиторы кальциневрина.

Для цитирования: Космачева Е.Д., Мартиросян С.М., Лепшокова М.Х., Бабич А.Э. Ингибиторы кальциневрина и артериальная гипертензия у реципиентов внутренних органов. Системные гипертензии. 2017; 14 (3): 84–86. DOI: 10.26442/2075-082X_14.3.84-86

Calcineurin inhibitors and arterial hypertension in recipients of solid organs

[Review]

E.D.Kosmacheva^{1,2}, S.M.Martirosyan^{1,2}, M.Kh.Lepshokova^{1,2}, A.E.Babich^{⊠1,2}

¹Kuban State Medical University of the Ministry of Health of the Russian Federation. 350063, Russian Federation, Krasnodar, ul. Sedina, d. 4;

²Prof. S.V.Ochapovsky Clinical Hospital №1 of the Ministry of Health of the Krasnodar Region. 350029, Russian Federation, Krasnodar, ul. 1 Maya, d. 16

[™]anna-babich1@yandex.ru

For citation: Kosmacheva E.D., Martirosyan S.M., Lepshokova M.Kh., Babich A.E. Calcineurin inhibitors and arterial hypertension in recipients of solid organs. Systemic Hypertension. 2017; 14 (3): 84–86. DOI: 10.26442/2075-082X_14.3.84-86

Abstract

Arterial hypertension is an established risk factor for cardiovascular complications. Since the introduction of calcineurin inhibitors (CNI), arterial hypertension is observed in 50–80% of transplanted patients. Arterial hypertension and transplantation are closely linked, and its association may promote impaired graft and overall survival. We summarize the main mechanisms involved in the genesis of CNI-induced hypertension as follows: impaired renal function with the sodium retaining, endothelial dysfunction, renin-angiotensin-aldosterone system and sympathetic activation, production of vasoconstrictor substances, activation the renal Na+/CI-cotransporter. Attention is focused on the dose-dependent increase in arterial pressure and the need for further study of the intensity of the pro-hypertensive effect of various calcineurin inhibitors.

Key words: transplantation, arterial hypertension, calcineurin inhibitors.

рансплантация органов на сегодняшний день остается безальтернативно эффективным методом лечения больных с медикаментозно некурабельными заболеваниями. В последние годы обсуждаются вопросы профилактики, генеза, диагностики и лечения артериальной гипертензии (АГ) после трансплантации внутренних органов. И предтрансплантационная, и посттрансплантационная АГ являются факторами риска, ассоциированными с высокой заболеваемостью и смертностью, что во многом обусловлено ятрогенными механизмами, связанными с постоянной лекарственной иммуносупрессией [1-4]. Общеизвестны прогипертензивные механизмы действия глюкокортикоидов [5-7], которые вкупе с метаболическими, электролитными нарушениями, а также риском стероидных поражений желудочно-кишечного тракта привели к минимизации применения этого клинико-фармакологического класса препаратов у реципиентов внутренних органов [8-10]. Все более часто используются «безстероидные» протоколы профилактики отторжения трансплантата, в которых доминирующей альгернативой становятся другие клинико-фармакологические группы. Заболеваемость АГ после трансплантации, по мнению ряда авторов [11, 12], повысилась прежде всего с момента введения в схемы иммуносупрессии ингибиторов кальциневрина (циклоспорин, такролимус). Использование этих двух препаратов, являющихся основой иммуносупрессивной терапии у большинства пациентов после трансплантации [2, 13, 14], привело к повышению артериального давления (АД) у 50–80% реципиентов. Оба препарата способны индуцировать или усугублять течение АГ [15–17]. Имеются данные о том, что ингибиторы кальциневрина инициируют АГ de novo и ухудшают течение АГ, имеющейся до трансплантации [18]. В когорте 1267 пациентов, принимающих циклоспорин после трансплантации печени, у 32,7% АГ диагностирована уже после 1-го года лечения [19]. В настоящее время механизмы действия ингибиторов кальциневрина, инициирующие АГ, достаточно хорошо изучены.

Основные звенья патогенеза АГ, индуцированной ингибиторами кальциневрина

Влияние ингибиторов кальциневрина на функцию почек

Снижение скорости клубочковой фильтрации является прямым следствием снижения почечного кровотока, вызванного приемом ингибиторов кальциневрина [20, 21]. Системные иммуносупрессанты обладают нефротоксичным действием и способны повышать уровень АД, особенно диастолического [22]. При гистологическом исследовании у пациентов с нефропатией, развившейся на фоне приема ингибиторов кальциневрина, выявляются реноваскулярные повреждения, предполагающие наличие прямого нефротоксического действия, сопровождающегося снижением функции почек и развитием АГ. Ингибиторы кальциневрина вызывают как острую, так и хроническую нефротоксичность. Острая нефротоксичность при приеме ингибиторов кальциневрина возникает вследствие ре-

нальной афферентной вазоконстрикции и снижения клубочковой фильтрации, является обратимой при снижении дозы и/или отмене данных препаратов [23]. Хроническая нефротоксичность при приеме ингибиторов кальциневрина характеризуется тубулоинтерстициальным фиброзом, может приводить к развитию хронического интерстициального нефрита, необратимому повреждению нефронов. Хроническая нефропатия при приеме ингибиторов кальциневрина обычно асимптомна с постепенным снижением функции почек, включающим протеинурию с малым мочевым синдромом. Прием ингибиторов кальциневрина сопровождается дозозависимым повышением уровней креатинина, азота, мочевины, гиперкалиемией, метаболическим ацидозом, а также может приводить к развитию хронического интерстициального нефрита и необратимому повреждению нефронов [23].

Влияние ингибиторов кальциневрина на реабсорбцию натрия

Повышение АД требует усиления натрийуреза, что происходит благодаря повышению активности натриевого котранспортера в дистальном отделе почечного канальца. Ингибиторы кальциневрина повышают реабсорбцию натрия и снижают его гломерулярную фильтрацию [24]. Этот класс препаратов способен частично дезактивировать натриевый котранспортер, что индуцирует кальциневринзависимую солечувствительную форму АГ и имеет сходство, по мнению ряда авторов, с проявлением врожденной семейной «гиперкалиемической гипертензии» (синдром Гордона) [25–28].

Синдром Гордона – патология, наследуемая аутосомно-доминантно с мутацией в одном из двух генов: PRKWNK1 (12p13) и PRKWNK4 (17p) [27, 29]. В итоге происходит избыточная активация тиазидчувствительного Na⁺/Cl⁻- котранспортера и ряда других ионтранспортирующих каналов. Повышение активности Na⁺/Cl⁻-канала приводит к задержке натрия, повышению абсорбции хлора, воды и, как следствие, к АГ, гиперкалиемии и ацидозу. При наличии подобного влияния ингибиторов кальциневрина на Na+/Cl-котранспортер у реципиентов будут отмечаться аналогичные биохимические изменения. В работе Е. Hoorn и соавт. [27] показано, что такролимус подавляет ингибирующее действие киназ на Na+/Cl--котранспортер, способствует его фосфорилированию, повышению активности в эпителиальных клетках дистальных извитых канальцев нефрона [27]. Как при синдроме Гордона, так и при аналогичном ятрогенном эффекте ингибиторов кальциневрина на Na⁺/Cl⁻-котранспортер повышается чувствительность к бессолевой диете и приему тиазидных диуретиков. Так, у пациента с гипертонической болезнью тиазиды снижают систолическое и диастолическое давление на 13 и 10 мм рт. ст. соответственно, а у больных с синдромом Гордона на 55 и 25 мм рт. ст. [30, 31]. Примечательно, что при этом варианте ятрогенной кальциневрин-зависимой АГ наблюдается снижение активности ренина плазмы и альдостерона в крови. Ятрогенная гиперкалиемия на фоне ингибиторов кальциневрина может быть связана как с повышением реабсорбции хлора, так и с гипоальдостеронизмом.

Влияние ингибиторов кальциневрина на эндотелиальную функцию и синтез вазоконстрикторных субстанций

Ряд авторов связывают индуцирование АГ у пациентов, принимающих ингибиторы кальциневрина, с нарушением функции эндотелия сосудов, причем доказано сохранение синтеза вазоконстрикторов в противовес снижению уровня простациклина, эндотелинрелаксирующего фактора и антинитроксидной активности [32–34].

Ингибиторы кальциневрина способствуют продуцированию вазоконстрикторных субстанций, в частности, эндотелина-1, который, как полагают исследователи, вовлечен в процесс тканевого повреждения, фиброза, стимуляции провоспалительных цитокинов [35, 36]. Показано, что ингибиторы кальциневрина могут повышать уровень ангиотензина II, последствием

чего является вазоконстрикция и развитие АГ [37]. В ранние сроки после трансплантации активность плазменного ренина снижена, но спустя время ингибиторы кальциневрина активизируют ренин-ангиотензин-альдостероновую систему (РААС) на почечном или периферическом васкулярном уровне. Это повышение активности РААС может актуализироваться в разное время после операции, что имеет практическое значение, детерминируя момент начала использования ингибиторов ангиотензинпревращающего фермента или сартанов. Это время задержки зависит от разных факторов, в частности, трансплантируемого органа (почки, сердце, печень, костный мозг), использования сопутствующей терапии и ряда гемодинамических механизмов. Например, повышение уровня плазменного ренина наблюдается у реципиентов печени спустя 13 мес после трансплантации, но в сходной популяции низкий ренин наблюдается первые 4 мес, даже у тех, у кого гипертензия разовьется позже [38, 39].

Влияние ингибиторов кальциневрина на симпатическую активность

Гипертензивное действие ингибиторов кальциневрина может быть связано с их влиянием на активность симпатической нервной системы. I.Klein и соавт. [40] изучали влияние циклоспорина и такролимуса на активность постганглионарных симпатических волокон в мышцах у практически здоровых лиц. Кратковременное назначение циклоспорина вызывало дозозависимое увеличение активности постганглионарных нервных волокон, сопровождалось увеличением частоты сердечных сокращений (ЧСС) и уровней АД. Дальнейший прием препарата в течение 2 нед приводил к снижению ЧСС, но при этом отмечалось дальнейшее увеличение уровней АД и массы тела: эти изменения не сопровождались повышением активности ренина плазмы. В то же время назначение такролимуса в высоких и низких дозах не приводило к значимым изменениям ни активности симпатической нервной системы, ни центральной гемодинамики, ни активности ренина плазмы крови. Циклоспорин при остром введении способен повысить АД активацией симпатической активности либо путем задействованности почечных механизмов с увеличением вазоконстрикции сосудистого русла, либо посредством центральной модуляции глутаминергической нейропередачи [41-43]. В исследовании E.Zbroch и соавт. [44] постоянная повышенная симпатическая активность у реципиентов внутренних органов наблюдалась вне зависимости от включения ингибиторов кальциневрина в схемы лечения. В работе I.Klein и соавт. [40] симпатозависимый гипертензивный эффект регистрировался на фоне циклоспорина, но не такролимуса. Следовательно, на фоне такролимуса использование антагонистов α-адренорецепторов может не дать преимуществ в сравнении с другими классами антигипертензивных лекарственных средств [7, 45]. Важно отметить, что в инструкции к препаратам в Государственном реестре лекарственных средств Минздрава России указана частота побочного эффекта «артериальная гипертензия» для циклоспорина (более одного случая на каждые 10 назначений), но не для такролимуса (АГ не упоминается в отличие от ишемической болезни сердца и нарушений ритма сердца) [46].

Зависимость прогипертензивного эффекта ингибиторов кальциневрина от дозы

В последние годы доказана дозозависимость прогипертензивного действия ингибиторов кальциневрина. В Кокрейновском обзоре указано, что низкие дозы циклоспорина 1–4 мг/кг в день повышают АД в среднем на 5 мм рт. ст., в то время как дозы более 10 мг/кг в день повышают АД на 11 мм рт. ст. [47]. J.Molkentin и соавт. показали, что острая нефротоксичность при приеме ингибиторов кальциневрина возникает вследствие ренальной афферентной вазоконстрикции и снижения клубочковой фильтрации. Она является обратимой при снижении дозы и/или отмене данных препаратов [23]. Тип трансплантации также может влиять на встречаемость АГ. Так, при пересадке костного мозга

повышение АД возникло у 57% реципиентов на циклоспорине [48], в то время как после трансплантации сердца АГ инициировалась почти у всех реципиентов, что опубликовано в работе E.Grossman и соавт. [49]. Эти факты могут быть связаны с разным целевым уровнем ингибитора кальциневрина в плазме и дозами, требуемыми при трансплантации разных органов.

Снижение дозы циклоспорина и такролимуса ведет к снижению АД, особенно важно это в отношении циклоспорина в связи с его существенно более мощным прогипертензивным эффектом [50-52]. В одном из консенсусов экспертов по применению циклоспорина у пациентов с ревматоидным артритом указано, что при повышении АД выше 140/90 мм рт. ст. в двух последовательных измерениях необходимо снизить дозу циклоспорина на 25% [53]. Однако преимущества низких доз у реципиентов внутренних органов в отношении нивелирования побочных эффектов могут сопровождаться необоснованными рисками провокации реакции отторжения трансплантата [54], что требует от практического врача крайней осторожности титрования дозы «на понижение». В то же время многочисленные наблюдения в реальной клинической практике у пациентов с АГ, индуцированной циклоспорином, показали улучшение результатов измерения при снижении дозы ингибиторов кальциневрина [55–57], в частности, снижение дозы циклоспорина на 50% спустя 1 год и более после операции снизило риск АГ у пациентов, в схемы которых введены глюкокортикоиды и микофенолат [55].

Таким образом, появление ингибиторов кальциневрина в арсенале посттрансплантационного ведения пациентов позволило существенно снизить длительность использования и дозы глюкокортикоидов, вызывающих существенно больший спектр нежелательных побочных реакций. В то же время доказанные прогипертензивные эффекты ингибиторов кальциневрина, в частности, циклоспорина, должны быть учтены в

Литература/References

- Mells G, Neuberger J. Reducing the risks of cardiovascular disease in liver allograft recipients. Transplantation 2007; 83 (9): 1141–50.
- Готье С.В., Мойсок Я.Г. Трансплантология: фармакотерапия без ошибок. М.: E-noto, 2014. / Gote S.V., Moisiuk la.G. Transplantologiia: farmakoterapiia bez oshibok. М.: E-noto, 2014. [in Russian]
- Hoorn E.J. Walsh SB, McCormick JA et al. Pathogenesis of calcineurin inhibitor induced hypertension. J Nephrol 2012; 25: 269–75. DOI: 10.5301/jn.5000174

 Azancot MA, Ramos N, Moreso FJ et al. Hypertension in chronic kidney disease: the influence of renal trans-
- plantation. Transplantation 2014; 98 (5): 537–42. DOI: 10.1097/TP.00000000000103
 Kassel LE, Odum LE. Our own worst enemy: pharmacologic mechanisms of hypertension. Adv Chronic Kid-
- ney Dis 2015; 22: 245–52. DOI:10.1053/j.ackd.2014.10.002
 Kirilov G, Tomova A, Dakovska L et al. Elevated plasma endothelin as an additional cardiovascular risk factor in patients with Cushing's syndrome. Eur J Endocrinol 2003; 149 (6): 549–53. DOI: http://dx.doi.org/ .1530%2Feje.0.1490549
- Taler SJ, Textor SC, Canzanello VJ et al. Role of steroid dose in hypertension early after liver transplantation
- with tacrolimus (FK506) and cyclosporine. Transplantation 1996; 62 (11): 1588–92. Трансплантация поджелудочной железы. Национальные клинические рекомендации. (Российское трансплантологическое общество). М., 2013. http://transpl.ru/images/cms/data/pdf/nacional_nye_klinic-heskie_rekomendacii_po_transplantacii_podzheludochnoj_zhelezy.pdf / Transplantatsiia podzheludochnoi zhelezy. Natsional nye klinicheskie rekomendatsii. (Rossiiskoe transplantologicheskoe obshchestvo). M., 2013. http://transpl.ru/images/cms/data/pdf/nacional_nye_klinicheskie_rekomendacii_po_transplantacii podzheludochnoj zhelezy.pdf [in Russian]
- Трансплантация печени. Национальные клинические рекомендации. (Российское трансплантологи-ческое общество). M., 2013. / Transplantatsiia pecheni. Natsional'nye klinicheskie rekomendatsii. (Rossiiskoe transplantologicheskoe obshchestvo). M., 2013. http://transpl.ru/images/cms/data/pdf/nacional_nye_klinicheskie_rekomendacii_po_transplantacii_pecheni.pdf / http://transpl.ru/images/cms/data/pdf/nacional_nye_
- klinicheskie_rekomendacii_po_transplantacii_pecheni.pdf [in Russian]
 Трансплантация почки. Национальные клинические рекомендации. (Российское трансплантологическое общество). М., 2013. / Transplantatsiia pochki. Natsional'nye klinicheskie rekomendatsii. (Rossiiskoe transplantologicheskoe obshchestvo). M., 2013. http://transpl.ru/images/cms/data/pdf/nacional_nye_klinicheskie_reko-mendacii_po_transplantacii_pochki.pdf / http://transpl.ru/images/cms/data/pdf/nacional_nye_klinicheskie_re-
- komendacii_po_transplantacii_pochki.pdf [in Russian]
 Textor SC, Taler SJ, Canzanello VJ et al. Posttransplantation hypertension related to calcineurin inhibitors. Lier Transplantation 2000; 5 (6): 521-30.
- Shiba N, Chan MC, Kwok BW et al. Analysis of survivors more than 10 years after heart transplantation in the cyclosporine era: Stanford experience. J Heart Lung Transplant 2004; 23 (2): 155–64.
- Шумаков В.И. Трансплантология. М.: Мед. информ. агентство, 2006. / Shumakov V.I. Transplantologiia. М.: Med. inform. agentstvo, 2006. [in Russian]
- Siddharth S, Watt KD. Long-term medical management of the liver transplant recipient: what the primary care physician needs to know. Mayo Clin Proc 2012; 87 (8): 779–90.

 Bohlke M, Barcellos FC, Rocha M et al. Predictors of hypertension following successful renal transplantation: a population-based study. Transplant Proc 2009; 41: 3743–4632.

 Hohage H, Bruckner D, Arlt M et al. Influence of cyclosporine A and FK506 on 24 h blood pressure monito-

- ring in kidney transplant recipients. Clin Nephrol 1996; 45 (5): 342–4. Nishi H, Hanafusa N, Kondo Y et al. Clinical outcome of thrombotic microangiopathy after living-donor liver
- transplantation treated with plasma exchange therapy. Clin J Am Society Nephrology 2006; 4: 811–9. Gerhards U, Rudash M, Hokage U. Blood pressure controls in kidney transplant recipients: influence of immunosuppression. J A Pharmac 1999; 19 (1): 45–54.
- Snanoudj R, Kriaa F, Arzouk N et al. Single-center experience with cyclosporine therapy for kidney transplantation: analysis of a twenty-year period in 1200 patients. Transplant Proc 2004; 36: 83–8. DOI: 10.1016/j. transproceed 2004 01 089
- Porter GA, Bennett WM, Sheps SG. Cyclosporine-associated hypertension. National High Blood Pressure Education Program. Arch Intern Med 1990; 150: 280–3.
- Van Buren DH, Burke JF, Lewis RM. Renal function in patients receiving long-term cyclosporine therapy. J Am Soc Nephrol 1994; 4 (Suppl. 8): 17–22.
- Vercauteren SB, Bosmans JL, Elseviers MM et al. A meta-analysis and morphological review of cyclosporine-induced nephrotoxicity in auto-immune diseases. Kidney Int 1998; 54: 536–45.
- 23. Molkentin JD, Lu JR, Antos CL et al. A calcineurin-dependent transcriptional pathway for cardiac hypertrop-
- Wadei HM, Textor SC, Hypertension in the kidney transplant recipient, Transplant Rev (Orlando) 2010; 24: 105–20.
- Hoorn E.J., Nelson J.H., McCormick J.A et al. The WNK kinase network regulating sodium, potassium, and blood pressure. J Am Soc Nephrol 2011; 4: 605–14.

- Luft FC. How calcineurin inhibitors cause hypertension. Nephrol Dial Transplant 2012; 2 (27): 473–5. Hoorn EJ, Walsh SB, McCormick JA et al. The calcineurin inhibitor tacrolimus activates the renal sodium chlo-
- ride cotransporter to cause hypertension. Nature Medicine 2011; 10 (17): 1304–9.

 Melnikov S, Mayan H, Uchida S et al. Cyclosporine metabolic side effects: association with the WNK4 system.
- Eur J Clin Inves 2011: 10 (41): 1113-20.
- Dbouk HA, Huang CL, Cobb MH. Hypertension: the missing WNKs. Am J Physiol Renal Physiol 2016; 311:
- Bhavani N. Pediatric endocrine hypertension. Indian J Endocrinol Metab 2011; 15 (Supp. I4): 361
- Маркель А.Л. Генетика артериальной гипертонии. Вестн. рос. академии наук. 2008; 3 (78): 235-46. /
- Markel AL. Genetika arterial noi gipertonii. Vestn. ros. akademii nauk. 2008; 3 (78): 235–46. [in Russian] Morris ST, McMurray JJ, Rodger RS et al. Endothelial dysfunction in renal transplant recipients maintained on cyclosporine. Kidney Int 2000; 3 (57): 1100–6.
- oullet JB, Xue H, McCarron DA et al. Vascular mechanisms of cyclosporin-induced hypertension in the rat. J Clin Inves 1994: 5 (93): 2244-50.
- Richards NT, Poston L, Hilton PJ. Cyclosporine A inhibits relaxation but does not induce vasoconstriction in human subcutaneous resistance vessels. J Hyperten 1989; 1 (7): 1–3.
 Cauduro RL, Costa C, Lhulieretal F. Endothelin-1 plasma levels and hypertension in cyclosporine-treated re-
- nal transplant patients. Clin Transplant 2005; 19 (4): 470–4.
- Forslund T, Hannonen P, Reitamo S et al. Hypertension in cyclosporin A-treated patients is independent of circulating endothelin levels. J Int Med 1995; 1 (238): 71–5.

 Karabesheh S, Verma DR, Jain M et al. Clinical and hemodynamic effects of renin-angiotensin system blocka-
- de in cardiac transplant recipients. Am J Cardiol 2011; 108 (12): 1836–9. Lee DBN. Cyclosporine and the renin-angiotensin axis. Kidney Int 1997; 1 (52): 248–60.
- Textor SC. Hypertension and transplantation in Hypertension Primer. Lippincott Williams and Wilkins, 2003. Klein IH, Abrahams AC, Van Ede T. Differential effects of acute and sustained cyclosporine and tacrolimus on
- sympathetic nerve activity. J Hypertens 2010; 28 (9): 1928–34.

 Sander M, Lyson T, Thomas GD et al. Sympathetic neural mechanisms of cyclosporine-induced hypertension. Am J Hypertens 1996; 9 (11): 121–38.
- Victor RG, Thomas GD, Marban E et al. Presynaptic modulation of cortical synaptic activity by calcineurin. Proc Nation Acad Sci USA 1995; 14 (92): 6269–73.
- Grassi G. Assessment of sympathetic cardiovascular drive in human hypertension: achievements and perspectives. Hypertension 2009; 4 (54): 690–7. Zbroch E, Malyszko J, Mysliwiec M. Hypertension in solid organ transplant recipients. Ann Transplant 2012; 44.
- 17:100-7 Schlaich MP, Grassi G. Sympatho excitation in calcineurin inhibitor-induced hypertension: villain or innocent 45.
- by stander? J Hypertens 2010; 9 (28): 1809–10. Государственный реестр лекарственных средств. http://grls.rosminzdrav.ru / Gosudarstvennyi reestr le-
- karstvennykh sredstv. http://grls.rosminzdrav.ru [in Russian]
 Robert N, Wong GW, Wright JM. Effect of cyclosporine on blood pressure. Cochrane Database Syst Rev 2010: Cd007893. DOI: 10.1002/14651858.CD007893.pub2
- Loughran JTP, Deeg HJ, Dahlberg S et al. Incidence of hypertension after marrow transplantation among 112 patients randomized to either cyclosporine or methotrexate as graft-versus-host disease prophylaxis. Br J Haematol 1985: 59: 547-53
- Grossman E, Messerli FH. High blood pressure. A side effect of drugs, poisons, and food. Arch Intern Med 1995: 155: 450-60.
- Jensik SC. Tacrolimus (FK 506) in kidney transplantation: three-year survival results of the US Multicenter, randomized, comparative trial. Transplantation Proceedings 1998; 4 (30): 1216-8.
- Bohlke M, Barcellos FC, Rocha M et al. Predictors of hypertension following successful renal transplantation: a population-based study. Trans Proceedings 2009; 9 (41): 3743–6.
- Mangray M, Vella JP. Hypertension after kidney transplant. Am J Kidney Dis 2011; 2 (57): 331–41. Cush JJ, Tugwell P, Weinblatt M et al. US consensus guidelines for use of cyclosporine A in rheumatoid arthri-
- tis. J Rheumatol 1999: 26: 1176-86. Ekberg H, Griny J, Nashan B et al. Cyclosporine sparing with mycophenolate mofetil, daclizumab and cor-ticosteroids in renal allograft recipients: the CAESAR study. Am J Transplant 2007; 3 (7): 560–70.
- Pascual M, Curtis J, Delmonico FL et al. A prospective, randomized clinical trial of cyclosporine reduction in stable patients greater than 12 months after renal transplantation. Transplantation 2003;
- 75 (9): 1501-5
- Margreiter R. Efficacy and safety of tacrolimus compared with ciclosporin microemulsion in renal transplantation: a randomized multicenter study. Lancet 2002; 359 (9308): 741–6.
 Gonwa T, Mendez R, Yang HC. Randomized trial of tacrolimus in combination with sirolimus or mycopheno-
- late mofetil in kidney transplantation: results at 6 months. Transplantation 2003; 75 (8): 1213-20.

СВЕДЕНИЯ ОБ АВТОРАХ

Космачева Елена Дмитриевна – д-р. мед. наук, проф., зав. каф. терапии №1 ФГБОУ ВО КубГМУ, зам. глав. врача по мед. части ГБУЗ «НИИ-ККБ №1 им. проф. С.В.Очаповского», глав. кардиолог Краснодарского края

Мартиросян Соня Макичевна – аспирант каф. терапии №1 ФГБОУ ВО КубГМУ, кардиолог ГБУЗ «НИИ-ККБ №1 им. проф. С.В.Очаповского» Лепшокова Марина Халисовна – аспирант каф. терапии №1 ФГБОУ ВО КубГМУ, кардиолог ГБУЗ «НИИ-ККБ №1 им. проф. С.В.Очаповского»

Бабич Анна Эдуардовна – аспирант каф. терапии №1 ФГБОУ ВО КубГМУ, гастроэнтеролог, кардиолог ГБУЗ «НИИ-ККБ №1 им. проф. С.В.Очаповского». E-mail: anna-babich1@yandex.ru