State of herd immunity against smallpox in Moscow residents

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

The global spread of monkeypox, including in non-endemic countries, allowed WHO to declare the outbreak of this disease a public health emergency of international concern in 2022. The maximum threat status required constant monitoring of the incidence, development of counteraction plans, expansion of diagnostic capabilities, use of specific prophylaxis and treatment. It was suggested that previously formed immunity to smallpox can with a high degree of probability protect against infection with monkeypox virus (MPXV).

Objective. Assessment of the level of residual immunity to vaccinia virus using serological cross-testing of blood serum samples in different age groups of the Moscow population.

Materials and methods. A proprietary ELISA test system was created and a virus neutralization reaction protocol was developed. Blood serum samples obtained from adult volunteers over 30 years of age (n = 3016) were tested for the presence of IgG to the cowpox virus, as well as virus neutralizing activity.

Results. The seropositivity rate (OPrel > 1.0) among individuals under 45 years of age was 10.8%, 46–65 years – 51.6%, and among individuals over 66 years of age – 66.8%, indicating that they have residual immunity to smallpox. Distribution of the examined individuals into two age cohorts, 30–45 years and 46–80 years, and their subsequent comparison showed that in the cohort of individuals aged 30–45 years, immunity with a level of virus-neutralizing antibodies (VNA) ≥ 1:20 was present in 5.4% of cases, while in the cohort of 46–80 years – in 46.4%. It was shown that there is a direct correlation between the data obtained by the methods of assessing virus-neutralizing activity and ELISA using the developed reagent kits.

Conclusion. The established level of protection is insufficient to achieve herd immunity. Calculations based on open data on monkeypox incidence in 2022 showed that to stop the circulation of MPXV in the population, at least 50.25–65.28% of the population should be immune to this infection. It is necessary to develop and create vaccines that are highly effective against orthopoxviruses, in particular MPXV, to ensure protection of Moscow residents in the event of the spread of monkeypox, circulation of the monkeypox virus and the achievement of herd immunity.

Толық мәтін

Рұқсат жабық

Авторлар туралы

Vladimir Gushchin

Gamaleya National Research Center for Epidemiology and Microbiology; Sechenov First Moscow State Medical University; Lomonosov Moscow State University

Email: wowaniada@yandex.ru
ORCID iD: 0000-0002-9397-3762

ВD, Associate Professor, Head of the Department of Epidemiology; Head of the Department of Medical Genetics; Senior Researcher at the Department of Virology of the Faculty of Biology

Ресей, Moscow; Moscow; Moscow

Tatyana Semenenko

Gamaleya National Research Center for Epidemiology and Microbiology; Sechenov First Moscow State Medical University

Email: semenenko@gamaleya.org
ORCID iD: 0000-0002-6686-9011

MD, Chief Researcher; Professor at the Department of Infectology and Virology

Ресей, Moscow; Moscow

Yana Simakova

Gamaleya National Research Center for Epidemiology and Microbiology

Email: y.v.simakova@yandex.ru
ORCID iD: 0000-0002-5033-6931

Researcher

Ресей, Moscow

Daria Ogarkova

Gamaleya National Research Center for Epidemiology and Microbiology

Email: DashaDv1993@gmail.com
ORCID iD: 0000-0002-1152-4120

Junior Researcher

Ресей, Moscow

Inna Dolzhikova

Gamaleya National Research Center for Epidemiology and Microbiology

Email: iv.dolzhikova@yandex.ru
ORCID iD: 0000-0003-2548-6142

Cand. Biol. Sci., Leading Researcher, Head of the Laboratory of the State Collection of Viruses

Ресей, Moscow

Olga Zubkova

Gamaleya National Research Center for Epidemiology and Microbiology

Email: olga-zubkova@yandex.ru
ORCID iD: 0000-0001-7893-8419

Cand. Biol. Sci., Leading Researcher

Ресей, Moscow

Denis Zrelkin

Gamaleya National Research Center for Epidemiology and Microbiology

Email: aleza4striker@yandex.ru
ORCID iD: 0000-0003-0899-8357

Junior Researcher

Ресей, Moscow

Igor Grigoryev

Gamaleya National Research Center for Epidemiology and Microbiology

Email: iggrigoriev.ltb@gmail.com
ORCID iD: 0000-0001-6946-2156

Researcher

Ресей, Moscow

Andrey Sinyavin

Gamaleya National Research Center for Epidemiology and Microbiology

Email: andreysi93@ya.ru
ORCID iD: 0000-0001-7576-2059

Cand. Chem. Sci., Researcher

Ресей, Moscow

Andrey Pochtovyy

Gamaleya National Research Center for Epidemiology and Microbiology; Lomonosov Moscow State University

Email: a.pochtovyy@gamaleya.org
ORCID iD: 0000-0003-1107-9351

Cand. Biol. Sci., Senior Researcher, Head of the Laboratory of Biotechnology; Associate Professor at the Department of Medical Genetics

Ресей, Moscow; Moscow

Sergey Borisevich

48th Central Research Institute of the Ministry of Defense of the Russian Federation

Email: 48cnii@mail.ru
ORCID iD: 0000-0002-6742-3919

Academician of the Russian Academy of Sciences, BD, Professor, Director

Ресей, Sergiev Posad

Svetlana Loginova

48th Central Research Institute of the Ministry of Defense of the Russian Federation

Хат алмасуға жауапты Автор.
Email: 48cnii@mail.ru

BD, Leading Researcher

Ресей, Sergiev Posad

Alexander Gintsburg

Gamaleya National Research Center for Epidemiology and Microbiology; Sechenov First Moscow State Medical University

Email: gintsburg@gamaleya.org
ORCID iD: 0000-0003-1769-5059

Academician of the Russian Academy of Sciences, BD, Professor, Director; Head of the Department of Infectology and Virology

Ресей, Moscow; Moscow

Әдебиет тізімі

  1. WHO (2022). WHO Director-General declares the ongoing monkeypox Outbreak a Public Health Emergency of International Concern. https://www.who.int/europe/news/item/23-07-2022-who-director-general-declares-the-ongoing-monkeypox-outbreak-a-public-health-event-of-international-concern
  2. WHO. 2022-24 Mpox (Monkeypox) Outbreak: Global Trends. Available at: https://worldhealthorg.shinyapps.io/mpx_global/
  3. Emergency situation reports. https://www.who.int/emergencies/situation-reports
  4. Gessain A., Nakoune E., Yazdanpanah Y. Monkeypox. New Engl. J. Med. 2022; 387: 1783–1793. doi: 10.1056/NEJMra2208860
  5. Isidro J., Borges V., Pinto M., Sobral D., Santos J.D., Nunes A. et al. Phylogenomic characterization and signs of microevolution in the 2022 multi-country outbreak of monkeypox virus. Nat. Med. 2022; 28(8): 1569–1572. doi: 10.1038/s41591-022-01907-y
  6. Singh R.K., Balamurugan V., Bhanuprakash V., Venkatesan G., Hosamani M. Emergence and reemergence of vaccinia-like viruses: global scenario and perspectives. Indian J. Virol. 2012; 23: 1–11.
  7. CDC. Multistate Outbreak of Monkeypox – Illinois, Indiana, and Wisconsin, 2003 (Atlanta, GA: Centers for Disease Control and Prevention, 2003), https://www.cdc.gov/mmwr/preview/mmwrhtml/mm5223a1.htm
  8. McGrail J.P., Mondolfi A.P., Ramírez J.D., Vidal S., García-Sastre A., Palacios G. et al. Comparative Analysis of 2022 Outbreak MPXV and Previous Clade II MPXV. J. Med. Virol. 2024; 96(11): e70023. doi: 10.1002/jmv.70023
  9. Adelino T., Santos S.C., Lima M.T., da Costa A., Guimarães N.R., Tomé L. et al. Differential diagnosis of exanthematous viruses during the 2022 Mpox outbreak in Minas Gerais, Brazil. J. Clin. Microbiol. 2024; 62(6): e0010324. doi: 10.1128/jcm.00103-24
  10. Alakunle E., Moens U., Nchinda G., Okeke M.I. Monkeypox Virus in Nigeria: Infection Biology, Epidemiology, and Evolution. Viruses 2020; 12(11): 1257. doi: 10.3390/v12111257
  11. Gigante C.M., Korber B., Seabolt M.H., Wilkins K., Davidson W., Rao A.K. et al. Multiple lineages of monkeypox virus detected in the United States, 2021–2022. Science 2022; 378(6619): 560–565. doi: 10.1126/science.add4153
  12. Adegboye O., Alele F., Pak A., Alakunle E., Emeto T., Leggat P. et al. Monkeypox Outbreak 2022, from a Rare Disease to Global Health Emergence: Implications for Travellers. Adv. Exp. Med. Biol. 2024; 1451: 355–368. doi: 10.1007/978-3-031-57165-7_23
  13. Patiño L.H., Guerra S., Muñoz M., Luna N., Farrugia K., van de Guchte A. et al. Phylogenetic landscape of Monkeypox Virus (MPV) during the early outbreak in New York City, 2022. Emerg. Microbes Infect. 2023; 12(1): e2192830. doi: 10.1080/22221751.2023.2192830
  14. Moss B. Understanding the biology of monkeypox virus to prevent future outbreaks. Nat. Microbiol. 2024; (6): 1408–1416. doi: 10.1038/s41564-024-01690-1
  15. MacIntyre C.R., Costantino V., Chen X., Segelov E., Chughtai A.A., Kelleher A. et al. Influence of Population Immunosuppression and Past Vaccination on Smallpox Reemergence. Emerg. Infect. Dis. 2018; 24: 646–653. doi: 10.3201/eid2404.171233
  16. Kunasekaran M.P., Chen X., Costantino V., Chughtai A.A., MacIntyre C.R. Evidence for Residual Immunity to Smallpox After Vaccination and Implications for Re-emergence. Mil. Med. 2019; 184(11–12): e668–e679. doi: 10.1093/milmed/usz181
  17. Mack T.M., Noble J.Jr., Thomas D.B. A prospective study of serum antibody and protection against smallpox. Am. J. Trop. Med. Hyg. 1972; 21: 214–218.
  18. Costa G.B., Augusto L.T.S., Leite J.A., Ferreira P.C.P., Bonjardim C.A., Abrahão J.S. et al. Seroprevalence of Orthopoxvirus in rural Brazil: insights into anti-OPV immunity status and its implications for emergent zoonotic OPV. Virol. J. 2016; 13: 121. doi: 10.1186/s12985-016-0575-6
  19. Costantino V., Trent M.J., Sullivan J.S., Kunasekaran M.P., Gray R., MacIntyre R. Serological Immunity to Smallpox in New South Wales, Australia. Viruses 2020; 12(5): 554. doi: 10.3390/v12050554
  20. Kennedy R.B., Poland G.A., Ovsyannikova I.G., Oberg A.L., Asmann Y.W., Grill D.E. et al. Impaired innate, humoral, and cellular immunity despite a take in smallpox vaccine recipients. Vaccine 2016; 34: 3283–3290. doi: 10.1016/j.vaccine.2016.05.005
  21. Haralambieva I.H., Ovsyannikova I.G., Kennedy R.B., Larrabee B.R., Pankratz V.S., Poland G.A. Race and sex-based differences in cytokine immune responses to smallpox vaccine in healthy individuals. Hum. Immunol. 2013; 74: 1263–1266. doi: 10.1016/j.humimm.2013.06.031
  22. Troy J.D., Hill H.R., Ewell M.G., Frey S.E. Sex difference in immune response to vaccination: A participant-level meta-analysis of randomized trials of IMVAMUNE®smallpox vaccine. Vaccine 2015; 33: 5425–5431. doi: 10.1016/j.vaccine.2015.08.032
  23. Harrop R., Ryan M.G., Golding H., Redchenko I., Carroll M.W. Monitoring of human immunological responses to vaccinia virus. Methods Mol. Biol. 2004; 269: 243–266. doi: 10.1385/1-59259-789-0:243
  24. Trends of mpox cases reported to CDC during the clade II outbreak by date. https://www.cdc.gov/mpox/data-research/cases/?CDC_AAref_Val=https:/ /www.cdc.gov/poxvirus/mpox/response/2022/mpx-trends.html
  25. World Health Organization. Mpox: Multi-country External Situation Report. file:///C:/Users/admin/Downloads/20241223_mpox-external-sitrep_-44.pdf
  26. Du Z., Shao Z., Bai Y., Wang L., Herrera-Diestra J.L., Fox S.J. et al. Reproduction number of monkeypox in the early stage of the 2022 multi-country outbreak. J. Travel. Med. 2022; 29(8): taac099. doi: 10.1093/jtm/taac099
  27. Oliveira S.N..I, de Oliveira J.S., Kroon E.G., Trindade G.S., Drumond B.P. Here, There, and Everywhere: The Wide Host Range and Geogrаphic Distribution of Zoonotic Orthopoxviruses. Viruses 2021; 13(1): 43. doi: 10.3390/v13010043
  28. Lum F.M., Torres-Ruesta A., Tay M.Z., Lin R.T., Lye D.C., Re´nia L. et al. Monkeypox: disease epidemiology, hostimmunity and clinical interventions. Nat. Rev. Immunol. 2022; 22: 597–613. DOIdoi: 10.1038/s41577-022-00775-4
  29. Hammarlund E., Lewis M.W., Carter S.V., Amanna I., Hansen S.G., Strelow L.I. et al. Multiple diagnostic techniques identify previously vaccinated individuals with protective immunity against monkeypox. Nat. Med. 2005; (11): 1005–1011. doi: 10.1038/nm1273
  30. Adamo S., Gao Y., Sekine T., Mily A., Wu J., Storgärd E. et al. Memory profiles distinguish cross-reactive and virus-specific T cell immunity to mpox. Cell. Host. Microbe 2023; 31(6): 928–936.e4. doi: 10.1016/j.chom.2023.04.015
  31. Grifoni A., Zhang Y., Tarke A., Sidney J., Rubiro P., Reina-Campos M. et al. Defining antigen targets to dissect vaccinia virus and monkeypoxvirus-specific T cell responses in humans. Cell Host. Microbe 2022; 30: 1662–1670.e4. doi: 10.1016/j.chom.2022.11.003

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. IgG levels to vaccinia virus in volunteers in the age groups of 30–45, 46–65, and 66–80 years

Жүктеу (156KB)
3. Fig. 2. ROC curves for determining the threshold at which the virus-neutralizing activity of antibodies can be predicted

Жүктеу (136KB)
4. Fig. 3. ROC curves for determirning the threshold at which the neutralizing activity of the virus can be predicted

Жүктеу (64KB)

© Bionika Media, 2025