CORONAVIRUS INFECTION AND VIRUSES OF THE HERPESVIRIDAE FAMILY


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The Herpesviridae family of viruses includes 9 serotypes that cause a variety of clinical manifestations, but share the common property: their infection or reactivation is observed in immunocompromised individuals. Due to the presence of angiotensin-converting enzyme receptors in the immunocompetent cells, through which the virus enters the cells, coronavirus infection causes their damage, contributing to immune system dysregulation. The consequence of this is Herpesviridae infection or reactivation. Various markers of herpesvirus infection are found in 20-70% of patients with coronavirus infection. An analysis of literature data may suggest that human herpes viruses are immune system dysregulation markers that certainly diminish quality of life, but worsen the course of the pathological process in patients with coronavirus infection, perhaps, only herpes simplex virus type 1, cytomegalovirus, and Kaposi sarcoma-associated virus.

Texto integral

Acesso é fechado

Sobre autores

Nailia Asfandiyarova

Academician I.P. Pavlov Ryazan State Medical University, Ministry of Health of Russia

Email: n.asfandiyarova2010@yandex.ru
MD, Associate Professor, Department of Outpatient Therapy, Preventive Medicine, and General Medical Practice Ryazan, Russia

Bibliografia

  1. Zheng M., Gao Y., Wang G., Song G., Liu S., Sun D. et al. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell. Mol Immunol. 2020; 17(5): 533-5. doi: 10.1038/s41423-020-0402-2
  2. Nicoli F., Clave E., Wanke K., von Braun A., Bondet V., Alanio C. et al. Primary immune responses are negatively impacted by persistent herpesvirus infections in older people: results from an observational study on healthy subjects and a vaccination trial on subjects aged more than 70 years old. EBioMedicine 2022; 76: 103852. doi: 10.1016/j.ebiom.2022.103852.
  3. Мелехина Е.В., Музыка А.Д., Калугина М.Ю., Горелов А.В., Чугунова О.Л. Современные представления об инфекции, вызванной вирусом герпеса человека 6-го типа. Архивъ внутренней медицины 2016; 27(1): 13-9. doi: 10.20514/2226-6704-2016-6-1-13-19
  4. Гузов С.А., Недзьведь М.К Патологическая анатомия герпетической инфекции: диагностика, формы, место в диагнозе. Минск: БГМУ, 2015. 20 c. Доступно по: https://docviewer.yandex.ru/view/95235475
  5. Герпетическая инфекция у взрослых. Клинические протоколы МЗ Республики Казахстан 2015. 35 с. https://diseases.medelement.com/disease/14166
  6. Литусов Н.В. Герпесвирусы. Екатеринбург: УГМУ, 2018. 26 c. https://text.ru/rd/aHR0cHM6Ly9kb2NwbGF5ZXIuY29tLzM2Mzk
  7. Franceschini E., Cozzi-Lepri A., Santoro A., Bacca E., Lancellotti G., Menozzi M. et al. Herpes Simplex Virus Re-Activation in Patients with SARS-CoV-2 Pneumonia: A Prospective, Observational Study. Microorganisms 2021; 9(9): 1896. doi: 10.3390/microorganisms9091896.
  8. Deana C., Vetrugno L., Stefani F., Bassi F. Bronchoscopic suspect of Herpesvirus infection in critically ill COVID-19 patients: two case reports and brief literature review. Acta Biomed [Internet]. 2022; 92(S1): e2021514. https://www.mattioli1885journals.com/index.php/actabiomedica/article/view/1242
  9. Xu R., Zhou Y., Cai L., Wang L., Han J., Yang X. et al. Coreactivation of the human herpesvirus alpha subfamily (Herpes Simplex virus-1 and Varicella Zoster virus) in a critically ill patient with COVID-19. Br. J. Dermatol. 2020; 183(6): 1145-7. doi: 10.1111/bjd.19484
  10. Busani S., Bedim A., Biagioni E., Serio L., Tonelli R., Meschiari M. et al.; Modena Covid-19 Working Group (MoCo19). Two Fatal Cases of Acute Liver Failure Due to HSV-1 Infection in COVID-19 Patients Following Immunomodulatory Therapies. Clin. Infect. Dis. 2021; 73(1): e252-5. doi: 10.1093/cid/ciaa1246.
  11. Shanshal M., Ahmed H.S. COVID-19 and Herpes Simplex Virus Infection: A Cross-Sectional Study. Cureus 2021; 13(9): e18022. doi: 10.7759/cureus
  12. Соломай Т.В., Семененко Т.А., Исаева Е.И., Ветрова Е.Н., Чернышова А.И., Роменская Э.В., Каражас Н.В. COVID-19 и риск реактивации герпесвирусной инфекции. Эпидемиол. инфекц. болезни. Актуал. вопр. 2021; 11(2): 55-62.
  13. Галинова И.В. Факторы риска преждевременных родов. Все ли однозначно? Наука молодых (Eruditio Juvenium) 2021; 9(1): 77-90.
  14. Diez-Domingo J., Parikh R., Bhavsar A.B., Cisneros E., McCormick N., Lecrenier N. Can COVID-19 Increase the Risk of Herpes Zoster? A Narrative Review. Dermatol Ther (Heidelb.). 2021; 11(4): 1119-26. doi: 10.1007/s13555-021-00549-1.
  15. Adam I. Is herpes zoster being an indicator for COVID-19 infection? Dermato.l Ther. 2020; 33(5): e13846. DOI: 10.1111/ dth.13846.
  16. Elsaie M.L., Youssef E.A., Nada H.A. Herpes Zoster might be an indicator for latent COVID-19 infection. Dermatol. Ther. 2020; 33(4): e13666. doi: 10.1111/dth.13666.
  17. Pona A., Jiwani R.A., Afriyie F., Labbe J., Cook P.P., Mao Y. Herpes Zoster as a potential complication of coronavirus disease 2019. Dermatol. Ther. 2020; 33(6): e13930. doi: 10.1111/dth.13930. Epub 2020 Jul 13. PMID: 32602610; PMCID: PMC7361152
  18. Cao X., Zhang X., Meng W., Zheng H. Herpes Zoster and Postherpetic Neuralgia in an Elderly Patient with Critical COVID-19: A Case Report. J. Pain.Res. 2020; 13: 2361-5. doi: 10.2147/JPR.S274199. PMID: 33061551; PMCID: PMC7519825
  19. Algaadi S.A. Herpes Zoster and COVID-19 infection: a coincidence or a causal relationship? Infection 2021; 22: 1-5. doi: 10.1007/s15010-021-01714-6. Epub ahead of print. PMID: 34807403; PMCID: PMC8607065
  20. Alfishawy M., Nassar M., Assal H.H., Ibrahim A.K., Abdalla M.S., Nso N., Elbendary A. Human Herpesviruses Reactivationin COVID-19. Ann. Pulm. Res. Med. 2021; 1(1): 1004. DOI: https://www.researchgate.net/publication/351716559_Human_Herpesviruses_Reactivation_in_COVID-19?enrichId=rgreq-59990ff0eafa1275a4457a3e2fbd9821-XXX&enrichSource= Y292ZXJQYWdlOzM 1 MTcxNjU 1OT t BUzoxMDI1NTE4NTU2MTc2Mzg3QDE2MjE1MTQwODU 5MDE%3D&el=1_x_2&_esc=publicationCoverPdf
  21. Katz J., Yue S., Xue W. Herpes simplex and herpes zoster viruses in COVID-19 patients. Irish. J. Med. Sci. 2021; 20(3): e573-82. doi: 10.1007/s11845-021-02714-z
  22. Maldonado M.D., Romero-Aibar J., P6rez-San-Gregorio M.A. COVID-19 pandemic as a risk factor for the reactivation of herpes viruses. Epidemiol. Infect. 2021; 149: e145. doi: 10.1017/S0950268821001333.
  23. Le Balc’h P., Pinceaux K., Pronier C., Seguin P., Tadi6 J.-M., Reizine F. Herpes simplex virus and cytomegalovirus reactivations among severe COVID-19 patients. Crit. Care. 2020; 24(1): 530. doi: 10.1186/s13054-020-03252-3
  24. Coisel Y., Bousbia S., Forel J.-M., Hraiech S., Lascola B., Roch A. et al. Cytomegalovirus and herpes simplex virus effect on the prognosis of mechanically ventilated patients suspected to have ventilator-associated pneumonia. PLoS One 2012; 7(12). https://www.ncbi.nlm.nih.gov/pmc/articles/ PMC3517464/
  25. Al-Omari A., Aljamaan F., Alhazzani W., Salih S., Arabi Y. Cytomegalovirus infection in immunocompetent critically ill adults: literature review. Ann.Intensive Care 2016; (6). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5095093/.
  26. Lino K., Alves L.S., Raposo J.V. et al. Presence and clinical impact of human herpesvirus-6 infection in patients with moderate to critical coronavirus disease-19. J. Med. Virol. 2022; 94 (3): 1212-6. doi: 10.1002/jmv.27392
  27. Drago F., Ciccarese G., Rebora A., Parodi A. Human herpesvirus-6, -7, and Epstein-Barr virus reactivation in pityriasisrosea during COVID-19. J. Med. Virol. 2021; 93(4): 1850-1. doi: 10.1002/jmv.26549
  28. Korge B. Pityriasis rosea. Reaktivierung einer humanen Herpesvirus-6- und -7-Infektion? Hautarzt. 2003; 54(1): 78-9. doi: 10.1007/s00105-002-0474-1
  29. Paolucci S., Cassaniti I., Novazzi F., Fiorina L., Piralla A., Comolli G. et al. San Matteo Pavia COVID-19 Task Force. EBV DNA increase in COVID-19 patients with impaired lymphocyte subpopulation count.Int. J. Infect. Dis. 2021; 104: 315-9. doi: 10.1016/j.ijid.2020.12.051
  30. Garcia-Martinez F.J., Moreno-Artero E., Jahnke S. SARS-CoV-2 and EBV coinfection. Med. Clin. (Barc). 2020; 155(7): 319-20. doi: 10.1016/j.medcli.2020.06.017
  31. Gardini G., Odolini S., Moioli G., Papalia D.A., Ferrari V., Matteelli A., Caligaris S. Disseminated Kaposi sarcoma following COVID-19 in a 61-year-old Albanian immunocompetent man: a case report and review of the literature. Eur. J. Med. Res. 2021; 26(1): 152. DOI: 10.1186/ s40001-021-00620-9
  32. Proal A.D., van Elzakker M.B. Long COVID or Post-acute Sequelae of COVID-19 (PASC): An Overview of Biological Factors That May Contribute to Persistent Symptoms. Front. Microbiol. 2021; 12: 698169. doi: 10.3389/fmicb.2021.698169
  33. Gold J.E., Okyay R.A., Licht W.E., Hurley D.J. Investigation of Long COVID Prevalence and Its Relationship to Epstein-Barr Virus Reactivation. Pathogens. 2021; 10(6): 763. doi: 10.3390/pathogens10060763
  34. Добин В.Л., Горбунов А.В., Муратов Е.Н. Клиническое наблюдение необычного течения коронавирусной инфекции у больного с хроническим диссеминированным туберкулезом легких и ВИЧ. Российский медико-биологический вестник имени академика И.П. Павлова 2021; 29(4): 539-43.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bionika Media, 2022

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies