Development of a Charge-Discharge Method for Controlling Large-Sized Electrochromic Devices

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

This article presents a new approach to controlling large-sized electrochromic devices based on the charge-discharge method. The developed method eliminates the problem of the edge effect and significantly equalizes the electro-optical characteristics of these products: 47 times compared to the galvanostatic control mode and 13.7 times compared to the pulse method. This, in turn, helps to increase the service life of large-sized electrochromic devices.

Full Text

Restricted Access

About the authors

Sergei O. Lebedev

ФГБОУ ВО «Санкт-Петербургский государственный технологический институт (технический университет)»

Author for correspondence.
Email: ya.lebedas@yandex.ru
ORCID iD: 0009-0000-6555-8054

assistant, Department of Automation of Chemical Industry Processes

Russian Federation, Санкт-Петербург

Leon A. Rusinov

ФГБОУ ВО «Санкт-Петербургский государственный технологический институт (технический университет)»

Email: journal@electronics.ru

Head of the Department of Automation of Chemical Industry Processes, Doctor of Technical Sciences, Professor

Russian Federation, Санкт-Петербург

Vladislav V. Kravchenko

АО «Октогласс»

Email: journal@electronics.ru

General Director

Russian Federation, Москва

Dmitry P. Knyazhev

АО «Октогласс»

Email: journal@electronics.ru

technical director

Russian Federation, Москва

Dmitry D. Bernt

АО «Октогласс»

Email: journal@electronics.ru

consultant

Russian Federation, Москва

References

  1. Popova A. S. The influence of building glazing on the microclimate and energy efficiency. Byulleten’ magistratury = Bulletin of the Magistracy. 2020;1–3(100):102–104.
  2. Kolobkova E. V., Sokhovich E. V., Zemko V. S. Effect of synthesis conditions of electrochromic WO3 films on the structure and thermal characteristics. Izvestiya Sankt-Peterburgskogo gosudarstvennogo tekhnologicheskogo instituta (tekhnicheskogo universiteta) = News of the Saint Petersburg State Institute of Technology (Technical University). 2013;19(45):3–7.
  3. Mayorov V. A. Electrochromic glasses with separate regulation of visible light and near infrared radiation transmission (review). Optika i spektroskopiya = Optics and Spectroscopy. 2019;126(4):495–514.
  4. Makaryan I. A., Grachev V. P., Aldoshin S. M. On the prospects for developing new energy-saving devices based on “smart” glass. Nanotekhnologii dlya al’ternativnoj energetici = Nanotechnology for alternative energy. 2012;11(79):98–112.
  5. Makaryan I. A., Efimov O. N., Gusev A. L. On the World Market of “Smart” Electrochromic Devices. Al’ternativnaya energetika i ekologiya = Alternative Energy and Ecology. 2014;3:81–93.
  6. Belousov A. L., Patrusheva T. N. Electrochromic oxide materials. Zhurnal Sibirskogo federal’nogo universiteta = Journal of the Siberian Federal University. 2014;7:698–710.
  7. Knyazhev D. P., Moskovets A. P., Bernt D. D., Kravchenko V. V. Method for stabilized control of high-speed optical switching of an electrochromic module and device for its implementation. Russian Patent No. 2743655. 2020.
  8. Rukavina T. D., Lin C. Switchable electrochromic devices with uniform switching and shading of preferred zones. Russian Patent No. 2262729. 2002.
  9. Bryan D. G. Control system for electrochromic devices. USA Patent No. 7277215. 2004.
  10. Jeremy M. Method and apparatus for switching large-area electrochromic devices. Russian Patent No. 2492516. 2009.
  11. Vannikov A. V., Gribkova O. L., Ivanov V. F., Nekrasov A. A., Nekrasova N. V., Savelyev V. V. Method and controller for controlling electrochromic light modulators with thin-film electrochromic and/or charge-buffer layers. Russian Patent No. 2655657. 2018.
  12. Brown S. K. Controller for optically switchable windows. Russian Patent No. 2656013. 2013.
  13. Duarte N. B., Valdisera K. M. Pulsed control of an electrochromic panel. USA Patent No. 2019082093. 2018.
  14. Lebedev S. O., Borodzyulya V. F., Trukhman G. P. Method and software and hardware complex for controlling electrochromic devices. Russian Patent No. 22758579. 2020.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The structure of the echo

Download (187KB)
3. Fig. 2. Histogram of determining the operating frequency of the echo by optical contrast (λ = 680 nm) in a wide frequency range.

Download (192KB)
4. Fig. 3. Histogram of determining the operating frequency of the echo by optical contrast (λ = 680 nm) in a narrow frequency range.

Download (195KB)

Copyright (c) 2025 Lebedev S.O., Rusinov L.A., Kravchenko V.V., Knyazhev D.P., Bernt D.D.