УДК 615.32.45

ПЕРСПЕКТИВНАЯ ЛЕКАРСТВЕННАЯ ФОРМА НЕЙРОТРОПНОГО СРЕДСТВА НА ОСНОВЕ СУБСТАНЦИИ ИЗ КОРНЕЙ PEGANUM HARMALA L.

Х.И. Итжанова, Ж.С. Нурмаганбетов, А.С. Мукажанова, А.Ж. Турмухамбетов, С.М. Адекенов

АО «Международный научно-производственный холдинг «Фитохимия», Республика Казахстан, г. Караганда

E- mail: phyto_pio@mail.ru

В настоящей статье представлены результаты технологических исследований, направленных на создание нового нейротропного средства на основе гармина гидрохлорида. Впервые разработано пероральное лекарственное средство в форме капсул в дозе 30 мг, соответствующее фармацевтическим показателям качества.

Ключевые слова: Pergamum harmala L., гармина гидрохлорид, капсулы.

PERSPECTIVE DRUG DOSAGE OF NEUTROPIC REMEDY ON THE BASIS OF EXCIPIENT FROM ROOTS OF PEGANUM HARMALA L.

H.I. Itzhanova, Zh.S. Nurmaganbetov, A.S. Mukazhanova, A.Zh. Turmukhambetov, S.M. Adekenov

"Fitohimiya" International scientific and manufacturing holding, Karaganda, Kazakhstan E- mail: phyto_pio@mail.ru

This article represents the results of technological researches on development of new neurotropic remedy based on water-soluble excipient of harmine hydrochloride. Peroral remedy in capsules at dose of 30 mg which correspond to pharmaceutical quality indices have been developed for the first time.

Keywords: *Peganum harmala L.*, harmine hydrochloride, capsules.

В АО «Международный научно-производственный холдинг «Фитохимия» проведено фитохимическое изучение подземной части гармалы обыкновенной (*Peganum harmala L.*), произрастающей в южных регионах Республики Казахстан. Выделен и наработан индольный алкалоид гармин и на его основе синтезирована водорастворимая форма — гармина гидрохлорид [1, 2]. При изучении фармакологической активности гармина гидрохлорида определена его нейротропная активность.

Целью настоящего исследования явилась разработка технологии получения гармина гидрохлорида в форме капсул.

Для получения капсул гармина гидрохлорида использованы биологически индифферентные вспомогательные вещества: наполнители – лактоза, магния карбонат основной, крахмал, позволяющие регулировать объемную плотность и придавать необходимую сыпучесть; скользящее вещество – кальция стеарат, придающий необходимую сыпучесть.

Для улучшения технологических свойств и обеспечения однородности дозирования капсул гармина гидрохлорида введена стадия гранулирования, оптимизировано количество скользящих веществ. Процесс капсулирования проводили на

капсулоориентирующей и капсулонаполняющей машине марки JTJ-100A, полирование капсул осуществляли на установке MJP-2.

При получении капсулированнной формы готовили гранулируемую массу, которую протирали через сито с диаметром пор 3 мм для формирования гранул, высушивали, просеивали через сито с диаметром пор 1 мм, опудривали кальция стеаратом. Составы разработанных модельных смесей капсул гармина гидрохлорида представлены в таблице 1.

Таблица 1 – Составы модельных смесей капсул гармина гидрохлорида

Наименование	Количество ингредиентов модели		
ингредиентов	на 1 капсулу, г		
	1	2	3
Гармина гидрохлорид	0,0400	0,0400	0,0400
Лактоза	0,1330	0,1368	-
Магния карбонат основной	-	-	0,0980
Крахмал	0,0250	-	0,0600
Поливинилпирролидон	-	0,0170	-
Натрия альгинат	-	0,0042	-
Кальция стеарат	0,0020	0,0020	0,0020
Вода очищенная	q.s.*	q.s.*	-
Спирт этиловый	-	_	q.s.*
Итого	0,2000	0,2000	0,2000

Примечание: q.s. – quantum satis

Следующим этапом работы явилось проведение исследований технологических свойств субстанции и модельных смесей капсул гармина гидрохлорида. В процессе исследования определены технологические параметры гранул: насыпная плотность, сыпучесть. С учетом терапевтических доз гармина гидрохлорида и насыпной массы гранул подобраны размеры капсул. В фармацевтической практике одним из основных факторов, влияющих на эффективность фармакологического действия капсул, является показатель распадаемости. В связи с этим проведено исследование определения показателя распадаемости трех моделей капсул гармина гидрохлорида.

Результаты определения технологических параметров и распадаемости моделей капсул гармина гидрохлорида представлены в таблице 2.

Таблица 2 — Технологические параметры и распадаемость моделей капсул гармина гидрохлорида

№ модельной	Насыпная плотность,	Сыпучесть,	Распадаемость,
смеси	г/мл	г/с	МИН
1	0,595	3,026	7
2	0,643	3,690	15
3	0,402	0,759	11

Выводы

Таким образом, проведенные нами исследования показали, что оптимальными по технологическим свойствам являются капсулы гармина гидрохлорида модели N = 1, обладающие хорошей насыпной плотностью и сыпучестью. Гранулы с гармина гидрохлоридом в дозе по 30 мг расфасованы в капсулы N = 2.

Библиографический список

- 1. Синтез четвертичных солей алкалоидов *Peganum harmala* L. / А.Ж Турмухамбетов., М.Т. Агедилова, Ж.С. Нурмаганбетов и др. // Химия природных соединений. 2009. №4. С. 504-507.
- 2. Турмухамбетов А.Ж. Алкалоиды растений Казахстана. Выделение, химическая модификация и биологическая активность. —/ Караганда: Гласир, 2009. 169 с.

Итжанова Хорлан Искожиевна— член-корреспондент НАН РК, доктор фармацевтических наук АО «Международный научно-производственный холдинг «Фитохимия». Область научных интересов: технология лекарств. E-mail: phyto_pio@mail.ru.

Нурмаганбетов Жангельды Сейтович — кандидат химических наук AO «Международный научно-производственный холдинг «Фитохимия». Область научных интересов: химия природных соединений. E-mail: phyto_pio@mail.ru.

Мукажанова Айгерим Сериковна — бакалавр химии АО «Международный научнопроизводственный холдинг «Фитохимия». Область научных интересов: технология лекарств. E-mail: phyto_pio@mail.ru.

Турмухамбетов Айбек Журсунович — доктор химических наук, профессор AO «Международный научно-производственный холдинг «Фитохимия». Область научных интересов: химия природных соединений. E-mail: phyto_pio@mail.ru.

Адекенов Сергазы Мынжасарович — академик НАН РК, доктор химических наук, профессор АО «Международный научно-производственный холдинг «Фитохимия». Область научных интересов: химия природных соединений. E-mail: phyto_pio@mail.ru.