REPRODUCTIVE FEATURES OF FESTUCA RUBRA L.
IN DIFFERENT ENVIRONMENTAL CONDITIONS

© 2018

Zueva Galina Aleksandrovna, candidate of biological sciences, senior researcher of Ornamental Plants Introduction Laboratory
Central Siberian Botanical Garden of Siberian Branch of Russian Academy of Sciences (Novosibirsk, Russian Federation)

Khusanova Irina Viktorovna, researcher of Laboratory of Introduction
Institute of Botany and Phytointroduction (Almaty, Republic of Kazakhstan)

Abstract. The paper presents comparative results of Festuca rubra L. seed productivity study in Siberia and Kazakhstan. The authors consider the influence of ecological conditions on the organo-educational process of the species. The authors reveal specific features of plants growth and development at different terms of seeding in different ecological conditions. In the first year of vegetation, plants in all variants undergo two phenological phases - shoots and tillering. Different planting dates make significant changes in the reproductive capacity of plants. In spring plants sowing at the meristem at the end of the growing season corresponds to the IV stage of organogenesis. The following year in spring, shoots of the 2nd, 3rd and 4th orders also become generative. An optimal method of Festuca rubra growing with maximum parameters of seed productivity was determined. It was found out that during spring sowing the maximum yield of seeds (up to 48 g/m²) can be obtained for the 3rd year of life of the cereal. For the 4th year there is a slight decrease (45.4 g/m²). With the early sowing date - the maximum yield (up to 51 g/m²) was obtained only for the 4th year of plant life and a further decrease is observed. During autumn sowing, the first fructification of cereals occurs only in the 3rd year of life and is expressed in the maximum number of shoots and the yield of seeds (68 g/m²). Further sharp decrease in such indicators as generative shoots and yields indicates the ineffectiveness of further preservation of the testes.

Keywords: Festuca rubra; lawn plant; ecological and biological features; climatic conditions; laboratory and field germination; reproductive capacity; organogenesis; seed productivity; harvest; environmental conditions; induction of flowering; seed production; ways of growing; Novosibirsk city; Almaty city.

УДК 581.92

ОСНОВНЫЕ ЧЕРТЫ СЕМЕЙСТВЕННОГО СПЕКТРА АДВЕНТИВНОЙ ФРАКЦИИ
ФЛОРЫ САМАРО-УЛЬЯНОВСКОГО ПОВОЛЖЬЯ

© 2018

Иванова Анастасия Викторовна, кандидат биологических наук, научный сотрудник лаборатории проблем фиторазнообразия
Костина Наталья Викторовна, кандидат биологических наук, заведующий лабораторией моделирования и управления экосистемами
Институт экологии Волжского бассейна РАН (г. Тольятти, Самарская область, Российская Федерация)
Лысенко Татьяна Михайловна, доктор биологических наук, заведующий научный сотрудник лаборатории проблем фиторазнообразия
Ботанический институт им. В.Л. Комарова РАН (г. Санкт-Петербург, Российская Федерация);
Институт экологии Волжского бассейна РАН (г. Тольятти, Самарская область, Российская Федерация)

Аннотация. Изучение адвентивной фракции флоры представляет собой отдельное направление флористических исследований. Изучаются общие закономерности последовательности видов адвентивных видов, их распространение по территории. Нередко при изучении адвентивной фракции анализируются семейственные спектры. В статье рассматриваются адвентивная фракция флоры территории Самаро-Ульяновского Поволжья, которая расположена в пределах двух природных зон — лесостепной и степной, четырех физико-географических провинций и 15 районов. Каждое физико-географическое подразделение характеризуется своими особенностями рельефа, геологического строения, почв, растительности и местных климатических условий. В семейственном спектре адвентивной фракции Самаро-Ульяновского Поволжья возможно выделить семейства, играющие ведущую роль в формирования ее состава. На основании данных по адвентивным фракциям флор физико-географических провинций и районов, выделенных на изучаемой территории, можно сказать, что первые четыре места в спектре занимают семейства Asteraceae, Poaceae, Brassicaceae и Chenopodiaceae. Перечень этих четырех ведущих семейств адвентивной фракции флоры остается неизменным, однако их порядок может быть различен. Вероятно, различия природных условий изученных территорий отражаются именно в порядке расположения ведущих семейств, так как состав их не изменяется. Изменение состава ведущей четверки семейственного спектра можно наблюдать в масштабах больших территорий, сравнивая спектры адвентивных фракций Ивановской, Тверской, Астраханской областей, а также других административных подразделений. Флоры различных физико-географических подразделений Самаро-Ульяновского Поволжья, несмотря на принадлежность к различным природным зонам, имеют сходные семейственные спектры адвентивных фракций. Отличаются они лишь присутствием одного-двух семейств. Например, среди ведущих семейств адвентов не во всех случаях оказывались Rosaceae, Onagraceae и Rubiaceae.

Ключевые слова: адвентивная фракция флоры; семействный спектр флоры; ведущие семейства; Самаро-Ульяновское Поволжье; физико-географические подразделения.
Введение

Адвентивная фракция флоры различных территорий рассматривалась в целом ряде работ. Часть из них посвящена изучению адвентивности в конкретных территорий [1–3], распространение отдельных видов [4–5]. Рассматривались и общие закономерности посевов введения адвентивных видов [6–7].

Нередко при изучении адвентивной фракции анализируется семейственный спектр [8–9], состав которого отражает особенности конкретной территории. Показано, что состав головной части семейного спектра видов флор различных физико-географических районов и провинций Самаро-Ульянновского Поволжья различен, что является индикатором экологических особенностей территории [10]. В составе адвентивной фракции также возможно выделить семейства, играющие важную роль в формировании видового состава, что соответствует их влияние на физико-географические подразделения территории. Таких родов может быть много при анализе всей флоры, что приводит к многочисленности видов, выделенных в видовом составе.

Материал и методы


Территория Приволжской равнины представляет собой несколько физико-географических районов (рис. 1): Средне-Сызганский (48), Корсунско-Сенгилеевский (50), Инян-Сызганский (51), Нижне-Ульянновский (52), Южно-Сызганский (53) и Жигулевский (55). В пределах территории Ярославской области рассматривается Мелекесский-Ставропольский район (64), Высокого Заволжья — Сокольский (69) и Самаро-Кипчакский (70). На территории Степной провинции Нижнего и Сыртового Заволжья, расположенной в степной зоне, рассматриваются три физико-географических района: Чиринский (71), Сыртовой (72) и Иргизский (73).

Рисунок 1 — Физико-географические районы Самаро-Ульянновского Поволжья (по: [11])

Рассматриваемые территории границы между собой, однако природные условия их существенно различаются, особенно в отношении рельефа и почвообразующих пород. Значительная протяженность территории севера на юг обеспечивает также и различие климатических условий.

Рельеф районов лесостепной провинции Приволжской равнины имеет двухъярусный характер. Это — высокий ступенчатый рельеф (плато), глубоко расчлененная речная и озерно-лесная система. Климат по сравнению с территориями Заволжья является более холодным и влажным.

Территория лесостепной провинции Нижнего Заволжья оказалась представлена равнинной со сравнительно слабой расчлененностью рельефа вследствие имеющего место в историческом процессе смешения русел р. Волги на запад на 100–120 км. На своем пути перемещающееся русло Волги оставило разнозернистую толщу речных и озерных осадков.

Относительная молодость рельефа и однообразный состав пород определяют здесь меньше разнообразие морфоспектрформатного орнамента. Нижненинский рельеф в целом определяется рельефом обстановки в Заволжье, которая сопровождается, чем в Предзападье. Высокое Заволжье в геоморфологическом отношении представляет собой возвышенностю довольно возвышенную равнину, расчлененную глубокими и широкими речными долинами. Южная часть территории отличается сравнительно пониженным и гладким рельефом. Климат Высокого Заволжья континентальный с жарким летом и холодной зимой.

Степная провинция Нижненинского и Сыртового Заволжья представлена Заволжской Сыртовой равниной. Климат здесь самый засушливый по сравнению с остальными провинциями. Годовая сума осадков 270–400 мм, что на 100–150 мм больше, чем в провинциях лесостепной зоны.
Различия природных условий рассматриваемых территорий отражаются на составе флоры, так как представители разных таксономических групп характеризуются различными экологическими требованиями.

Результаты исследований и их обсуждение

Состав и порядок ведущих семейств адвенциональной фракции флоры Самарской и Ульяновской областей, а также их основных физико-географических подразделений показан в таблице 1. На основании этих данных можно говорить о составе головной части семейственного спектра адвенциональной фракции, характерном для условий Самаро-Ульяновского По-волжья. Первые четыре места в спектре занимают семейства Asteraceae, Poaceae, Brassicaceae и Chenopodiaceae. Порядок их может несколько измениться в зависимости от степени изученности территории (числа видов в выборке). Очевидно, Asteraceae не всегда занимает первое место, уступая его злаковым. Можно отметить, что доли этих семейств сравнительно близки. Самым стабильным положением из всей четверки отличается семейство Chenopodiaceae.

Перечень семейств первой четверки, а также их порядок может зависеть от формирования территории, флора которой рассматривается: природное или административное деление. Во всех представленных спектрах первая четверка семейств остается неизменной.

Таблица 1 – Ведущие семейства адвенциональной фракции флор физико-географических провинций и расположенных на их территории административных областей (Самарской и Ульяновской)

<table>
<thead>
<tr>
<th>№</th>
<th>Лесостепная провинция Приволжской возвышенности</th>
<th>Лесостепная провинция Низменного Заволжья</th>
<th>Лесостепная провинция Высокого Заволжья</th>
<th>Степная провинция Низменного и Сыртового Заволжья</th>
<th>Самарская область</th>
<th>Ульяновская область</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ast (12.9)</td>
<td>Poa (12.9)</td>
<td>Ast (12.8)</td>
<td>Poa (14.2)</td>
<td>Poa (12.9)</td>
<td>Ast (13.1)</td>
</tr>
<tr>
<td>2</td>
<td>Bras (12.2)</td>
<td>Ast (12.5)</td>
<td>Bras (12.8)</td>
<td>Bras (13.6)</td>
<td>Ast (12.2)</td>
<td>Bras (12.4)</td>
</tr>
<tr>
<td>3</td>
<td>Poa (11.0)</td>
<td>Bras (10.7)</td>
<td>Poa (11.2)</td>
<td>Bras (12.5)</td>
<td>Bras (11.5)</td>
<td>Bras (10.8)</td>
</tr>
<tr>
<td>4</td>
<td>Chen (8.4)</td>
<td>Chen (8.6)</td>
<td>Chen (10.7)</td>
<td>Chen (11.4)</td>
<td>Chen (9.2)</td>
<td>Chen (7.8)</td>
</tr>
<tr>
<td>5</td>
<td>Fab (5.3)</td>
<td>Fab (4.3)</td>
<td>Pol (4.3)</td>
<td>Fab (5.7)</td>
<td>Fab (5.1)</td>
<td>Fab (5.9)</td>
</tr>
<tr>
<td>6</td>
<td>Lam (4.2)</td>
<td>Lam (3.9)</td>
<td>Pol (4.3)</td>
<td>Lam (5.1)</td>
<td>Lam (3.4)</td>
<td>Lam (4.3)</td>
</tr>
<tr>
<td>7</td>
<td>Bor (3.0)</td>
<td>Pol (3.6)</td>
<td>Bor (3.7)</td>
<td>Bor (3.4)</td>
<td>Pol (3.4)</td>
<td>Bor (3.3)</td>
</tr>
<tr>
<td>8</td>
<td>Pol (3.0)</td>
<td>Bor (3.2)</td>
<td>Lam (3.7)</td>
<td>Car (2.8)</td>
<td>Ros (3.1)</td>
<td>Pol (2.9)</td>
</tr>
<tr>
<td>9</td>
<td>Ros (2.7)</td>
<td>Car (2.9)</td>
<td>Onag (2.1)</td>
<td>Lam (2.3)</td>
<td>Onag (2.3)</td>
<td>Car (2.4)</td>
</tr>
<tr>
<td>10</td>
<td>Onag (2.7)</td>
<td>Car (2.9)</td>
<td>Api (2.1)</td>
<td>Apo (2.1)</td>
<td>Lam (2.3)</td>
<td>Ros (2.6)</td>
</tr>
</tbody>
</table>

Пятые место по количеству видов-адвентов занимает семейство Fabaceae, а шестое – Lamiaceae. Необходимо учитывать ранее упомянутый мезофитный характер семейства Lamiaceae в спектре адвенциональной фракции оказывается всегда выше, чем Caryophyllaceae. Очевидно, это происходит в связи с присутствием в нем большого количества адвенциональных видов (рис. 2).

Соотношение адвенциональных видов к общему количеству видов в ведущих семействах подтверждает состав семейственного спектра адвенциональных видов: самые многочисленные оказываются в головной части. Их можно назвать «основными адвенциональными семействами»: Brassicaceae и Chenopodiaceae. То есть можно сказать по семейству Boraginaceae, которое оказывается в первой десятке спектра адвенциональной фракции, хотя в спектре целой флоры оно расположено ниже.

![Рисунок 2 — Состав семейств головной части спектра флоры Самарской области (по [13])]
Описание текста изображения:

Иванова А.В., Костиева Н.В., Лысенко Т.М.
Основные черты семейственного спектра аддивентной фракции флоры...

03.02.00 — общая биология

Первые же два семейства — Asteraeae и Poaceae — вносят вклад в состав аддивентной флоры благодаря своей многочисленности в целом флоре. Следует также обратить внимание на разницу в количестве видов аддивентов у Asteraeae и Poaceae: она не столь существенна, как среди видов у целой флоры (рис. 2). По этой причине порядок ведущих семейств не устанавливается достаточно точно, в течение 400—600 видов флоры (табл. 1). В целом флора семейства Asteraeae выходит на первое место уже при около 100—200 видах, а после 300 устанавливается окончательно [15].

Таблица 2 — Головные части семейственных спектров аддивентной фракции флоры физико-географических районов Самаро-Ульяновского Поволжья

<table>
<thead>
<tr>
<th>№</th>
<th>48</th>
<th>50</th>
<th>51</th>
<th>52</th>
<th>54</th>
<th>55</th>
<th>56</th>
<th>66</th>
<th>69</th>
<th>70</th>
<th>71</th>
<th>72</th>
<th>73</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1078</td>
<td>928</td>
<td>792</td>
<td>961</td>
<td>766</td>
<td>995</td>
<td>1253</td>
<td>1145</td>
<td>799</td>
<td>812</td>
<td>715</td>
<td>714</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>261</td>
<td>199</td>
<td>102</td>
<td>139</td>
<td>111</td>
<td>184</td>
<td>281</td>
<td>170</td>
<td>114</td>
<td>143</td>
<td>105</td>
<td>102</td>
<td></td>
</tr>
</tbody>
</table>

Число видов

<table>
<thead>
<tr>
<th>№</th>
<th>48</th>
<th>50</th>
<th>51</th>
<th>52</th>
<th>54</th>
<th>55</th>
<th>56</th>
<th>66</th>
<th>69</th>
<th>70</th>
<th>71</th>
<th>72</th>
<th>73</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1078</td>
<td>928</td>
<td>792</td>
<td>961</td>
<td>766</td>
<td>995</td>
<td>1253</td>
<td>1145</td>
<td>799</td>
<td>812</td>
<td>715</td>
<td>714</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>261</td>
<td>199</td>
<td>102</td>
<td>139</td>
<td>111</td>
<td>184</td>
<td>281</td>
<td>170</td>
<td>114</td>
<td>143</td>
<td>105</td>
<td>102</td>
<td></td>
</tr>
</tbody>
</table>

Число аддивентных видов


Четверка семейств, обозначенная выше, также занимает первые места почти в каждом физико-географическом районе. В связи с недостаточным количеством видов флоры в выборке порядок их еще не установлен.

Аддивентная флора, в отличие от флоры в целом на территории Самаро-Ульяновского Поволжья, не характеризуется локальными особенностями. Среди состава и расположении ведущих семейств не наблюдается существенной разницы, несмотря на присутствие районов из различных природных зон. Безусловно, изменение параметров семейственного спектра можно наблюдать, но в масштабах больших территорий. При изучении аналогичных признаков у других территорий можно видеть, что состав и порядок ведущих семейств спектра изменяется (таблица 3).

Таблица 3 — Головные части семейственных спектров аддивентной фракции флоры различных территорий

<table>
<thead>
<tr>
<th>№</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ast</td>
<td>Ast</td>
<td>Ast</td>
<td>Ast</td>
<td>Ast</td>
<td>Ast</td>
</tr>
<tr>
<td>2</td>
<td>Poa</td>
<td>Poa</td>
<td>Poa</td>
<td>Poa</td>
<td>Poa</td>
<td>Poa</td>
</tr>
<tr>
<td>3</td>
<td>Bras</td>
<td>Bras</td>
<td>Bras</td>
<td>Bras</td>
<td>Bras</td>
<td>Bras</td>
</tr>
<tr>
<td>4</td>
<td>Fab</td>
<td>Fab</td>
<td>Fab</td>
<td>Fab</td>
<td>Fab</td>
<td>Fab</td>
</tr>
<tr>
<td>5</td>
<td>Ros</td>
<td>Ros</td>
<td>Ros</td>
<td>Ros</td>
<td>Ros</td>
<td>Ros</td>
</tr>
<tr>
<td>6</td>
<td>Sol</td>
<td>Sol</td>
<td>Sol</td>
<td>Sol</td>
<td>Sol</td>
<td>Sol</td>
</tr>
</tbody>
</table>

Примечание. 1 — Ивановская обл. [16]; 2 — г. Екатеринбург [17]; 3 — Республика Мордовия [8]; 4 — г. Воронеж [18]; 5 — Тверская обл. [19]; 6 — Астраханская обл. [20].

Самарский научный вестник. 2018. Т. 7, № 4 (25)
Смена природных условий вызывает изменение видового состава, а следовательно, и доли семейств Rosaceae, Fabaceae, Brassicaceae и Chenopodiaceae. В результате головная часть семейственного спектра перестраивается. При этом Asteraceae и Poaceae остаются на первых позициях.

Таким образом, ведущими семействами адвенцииной фракции флоры Самаро-Ульяновского Поволжья могут считаться Asteraceae, Poaceae, Brassicaceae и Chenopodiaceae.

Заключение
Основные черты семейственного спектра адвенцииной фракции флоры Самаро-Ульяновского Поволжья заключаются в следующем:
1. Первые четыре места в семейственном спектре адвенцииной фракции флоры занимают Asteraceae, Poaceae, Brassicaceae и Chenopodiaceae.
2. Порядок ведущих семей может отличаться у адвенцииных фракций флор различных физико-географических условий.
3. В отличие от флоры в целом, адвенцияная фракция по параметрам семейственного спектра не демонстрирует ярко выраженных локальных особенностей. Состав и перечень семей головной части спектра схож у физико-географических районов, расположенных в различных природных зонах.

Список литературы:

Статья публикуется при поддержке гранта РФФИ № 16-04-00747 а.
MAIN FEATURES OF THE SAMARA-ULYANOVSK VOLGA REGION FLORA ADVENTIVE FRACTION FAMILY SPECTRUM

© 2018

Ivanova Anastasiya Viktorovna, candidate of biological sciences, researcher of Phytdiversity Problems Laboratory
Kostina Natalia Viktorovna, doctor of biological sciences, head of Ecosystems Modeling and Management Laboratory
Institute of Ecology of the Volga River Basin of Russian Academy of Sciences (Togliatti, Samara Region, Russian Federation)
Lysenko Tatyana Mikhaylovna, doctor of biological sciences, leading researcher of General Geobotany Laboratory; leading researcher of Phytdiversity Problems Laboratory Komiarov Botanical Institute of Russian Academy of Sciences (Saint Petersburg, Russian Federation); Institute of Ecology of the Volga River Basin of Russian Academy of Sciences (Togliatti, Samara Region, Russian Federation)

Abstract. The study of the adventive fraction of flora is a separate area of floristic research. General patterns of adventive species introduction consequences as well as their distribution throughout the territory are studied. Often, when studying the adventive fraction, the family spectrum is analyzed. In the paper we consider the adventive fraction of the flora on the territory of Samara-Ulyanovsk Volga Region, which is located within two natural zones: forest-steppe, steppe, four physical-geographical provinces and 15 districts. Each physical-geographical unit is characterized by its peculiarities of relief, geological structure, soils, vegetation and local climatic conditions. In the family spectrum of the adventive fraction of Samara-Ulyanovsk Volga Region, it is possible to single out families that play a leading role in the formation of its composition. Based on the data on the adventive fractions of the floras of the physiographic regions and areas identified in the study area, it can be noted that the first four places in the spectrum are occupied by the following families Asteraceae, Poaceae, Brassicaceae and Chenopodiaceae. The list of these four leading families of the adventive fraction of the flora remains unchanged, but their order may be different. Probably, the differences in the natural conditions of the studied territories are reflected precisely in the order of the location of the leading families, since their composition does not change. The change in the composition of the leading four of the family spectrum can be observed on the scales of large areas: comparing the spectra of the adventive fractions of Ivanovo, Tver, Astrakhan Region, and other administrative divisions. Flora of various physical and geographical subdivisions of Samara-Ulyanovsk Volga Region, despite belonging to different natural zones, have similar family spectra of adventive fractions. They differ only in the presence of their families. For example, among the leading adventive families Rosaceae, Onagraceae and Rubiaceae were not in all cases.

Keywords: adventive fraction of flora; family spectrum of flora; leading families; Samara-Ulyanovsk Region; physico-geographical subdivisions.

УДК 581.45: (634.1.055 + 634.1.054)

УТЮШНИК ОЦЕНКИ КОЛИЧЕСТВЕННЫХ ПОКАЗАТЕЛЕЙ ЛИСТЬБЕВ НЕКОТОРЫХ СОРТОВ И ГИБРИДОВ ПЛОДОВЫХ И ЯГОДНЫХ РОЗОЦВЕТНЫХ

© 2018

Канделова Людмила Михайловна, доктор биологических наук, профессор, заведующий кафедрой экологии, ботаники и зооанатомии природы
Петрова Анна Борисовна, аспирант кафедры экологии, ботаники и зоологии природы
Савинская Кристина Андреевна, аспирант кафедры экологии, ботаники и зоологии природы
Янко Николай Викторович, биолог Ботанического сада
Самарский национальный исследовательский университет имени академика С.П. Королёва (г. Самара, Российская Федерация)

Антипенко Мария Ивановна, кандидат сельскохозяйственных наук, ведущий научный сотрудник Деменина Любовь Георгиевна, ведущий научный сотрудник, заместитель директора по научной работе
Кузнецов Анатолий Александрович, кандидат сельскохозяйственных наук, ведущий научный сотрудник Научно-исследовательский институт садоводства и лекарственных растений «Жигулевские сады» (г. Самара, Российская Федерация)

Аннотация. Листья высших растений обнаруживают широкий спектр структурных и эколого-функциональных различий, выраженных в таксономическом ряду, представителей экологических групп, а также связанных с адаптацией к комплексу биотопических условий. Среди количественных показателей, которые определяют при исследовании образцов листовой фитомассы, имеются важные параметры измерения и расчетные. Вторая группа показателей включает в том числе массу единицы площади листовой пластинки (LMA). В природе у растений разных жизненных форм данный показатель обнаруживает различия в пределах двух порядков (от минимума у пресноводных гидрофитов до максимума у обитателей пустынь). Функциональные группы растений характеризуются неоднинаковым уровнем пластичности LMA в градиенте из...