Методы машинного обучения для определения оптимального времени орошения кукурузы
- Авторы: Гатауллин С.Т.1, Осипов А.В.1, Плешакова Е.С.1, Юдин А.В.1
-
Учреждения:
- МИРЭА – Российский технологический университет
- Выпуск: Том 11, № 5 (2024)
- Страницы: 20-36
- Раздел: МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ, ЧИСЛЕННЫЕ МЕТОДЫ И КОМПЛЕКСЫ ПРОГРАММ
- URL: https://journals.eco-vector.com/2313-223X/article/view/656648
- DOI: https://doi.org/10.33693/2313-223X-2024-11-5-20-36
- EDN: https://elibrary.ru/BPUCZY
- ID: 656648
Цитировать
Полный текст



Аннотация
Глобальный прогноз увеличения производства продуктов питания на орошаемых землях ставит задачу оптимизации орошения. Экономия водных ресурсов особенно важна в засушливых областях, где очень важно понимать четко понимать, что поливать, когда и в каком количестве. В статье предложен метод оптимизации процесса орошения сельскохозяйственных культур с использованием системы контроля на основе видимых и гиперспектральных изображений. Нами предложен алгоритм и разработана система получения карты орошения кукурузы в режиме малой временной задержки. Система может быть установлена на круговой спринклер и состоит из 8 IP-камер, подключенных к видеорегистратору, подключенному к портативному компьютеру и гиперспектральной камеры, синхронизируемой с одной из IP-камер. Алгоритм установления норм полива состоит из трех этапов. Этапа установления средней стадии роста растений (площадка 6–8 растений), этапа определения количества воды в растениях на этой площадке и непосредственно этапа установления норм полива растений. В первом случае мы использовали модифицированную сверточную нейросеть DenseNet121 с блоком сжатия и возбуждения (SE), обученную на видимых изображениях с IP-камеры и позволяющую с точностью до 92% выделить стадию роста по шкале Biologische Bundesanstalt, Bundessortenamt und CHemische Industrie (BBCH). Во втором случае мы использовали гиперспектральные изображения, которые в совокупности с данными по стадии развития определяют количество воды в растениях. Гиперспектральные изображения преобразовывались в 2D-модель с помощью вейвлет-преобразований, а потом классифицировались с помощью капсульной нейронной сети 2D-CapsNet. Точность выявления недостатка или избытка воды в растениях составила 94%. На третьем этапе полученные с двух предыдущих этапов данные и ряд характеристик, связанных с текущим состоянием атмосферы и поля, сводились в отдельный классификатор на основе нейронной сети - многослойный перцептрон, который и размечал участки поля с повышенной и пониженной нормой полива. Полученная карта использовалась в дальнейшем при орошении этого поля. Это сократило объем расходуемой воды на 7,4%. При этом эффективность использования оросительной воды, увязанная с урожайностью сельскохозяйственных культур на единицу использованной воды, повысилась за счет увеличения урожайности на 8,4%.
Полный текст

Об авторах
Сергей Тимурович Гатауллин
МИРЭА – Российский технологический университет
Автор, ответственный за переписку.
Email: gataullin@mirea.ru
ORCID iD: 0000-0002-0446-0552
Scopus Author ID: 57205436562
ResearcherId: AAX- 8389-2021
кандидат экономических наук; ведущий научный сотрудник, Институт перспективных технологий и индустриального программирования
Россия, МоскваАлексей Викторович Осипов
МИРЭА – Российский технологический университет
Email: osipov_av@mirea.ru
ORCID iD: 0000-0002-1261-8559
Scopus Author ID: 57224632462
ResearcherId: AAB-5151-2022
кандидат физико-математических наук; доцент, Институт перспективных технологий и индустриального программирования
Россия, МоскваЕкатерина Сергеевна Плешакова
МИРЭА – Российский технологический университет
Email: pleshakova@mirea.ru
ORCID iD: 0000-0002-8806-1478
SPIN-код: 5152-8969
Scopus Author ID: 56471764200
ResearcherId: ABG-2302-2021
кандидат технических наук; доцент, Институт перспективных технологий и индустриального программирования
Россия, МоскваАлександр Викторович Юдин
МИРЭА – Российский технологический университет
Email: yudin_a@mirea.ru
ORCID iD: 0000-0002-6802-8603
Scopus Author ID: 56018042000
ResearcherId: A-1665-2014
доктор экономических наук; заведующий кафедрой, Институт перспективных технологий и индустриального программирования
Россия, МоскваСписок литературы
- Pereira L.S. Water agriculture and food: Challenges and issues. Water Resour. Manage. 2017. Vol. 31. No. 10. Pp. 2985–2999.
- Nikolaou G., Neocleous D., Christou A. et al. Implementing sustainable irrigation in water-scarce regions under the impact of climate change. Agronomy. 2020. Vol. 10. No. 8. P. 1120.
- Aragon B., Houborg R., Tu K. et al. CubeSats enable high spatiotemporal retrievals of crop-water use for precision agriculture. Remote Sens. 2018. Vol. 10. No. 12. P. 1867.
- Shafi U., Mumtaz R., García-Nieto J. et al. Precision agriculture techniques and practices: From considerations to applications. Sensors. 2019. Vol. 19. No. 17. P. 3796.
- Martos V., Ahmad A., Cartujo P., Ordoñez J. Ensuring agricultural sustainability through remote sensing in the era of agriculture 5.0. Appl. Sci. 2021. Vol. 11. No. 13. P. 5911.
- Monteleone S., Moraes E.A.D., de Faria B.T. et al. Exploring the adoption of precision agriculture for irrigation in the context of agriculture 4.0: The key role of Internet of Things. Sensors. 2020. Vol. 20. No. 24. P. 7091.
- da Silva Baptista B., Córcoles J.L., Colombo A., Moreno M.À. Feasibility of the use of variable speed drives in center pivot systems installed in plots with variable topography. Water. 2019. Vol. 11. No. 10. P. 2192.
- Mohamed A.Z., Peters R.T., Sarwar A. et al. Impact of the intermittency movement of center pivots on irrigation uniformity. Water. 2021. Vol. 13. No. 9. P. 1167.
- Rovelo C.O.R., Ruiz N.Z., Tolosa J.B. et al. Characterization and simulation of a low-pressure rotator spray plate sprinkler used in center pivot irrigation systems. Water. 2019. Vol. 11. No. 8. P. 1684.
- Rad S., Gan L., Chen X. et al. Sustainable water resources using corner pivot lateral a novel sprinkler irrigation system layout for small scale farms. Appl. Sci. 2018. Vol. 8. No. 12. P. 2601.
- Serrano J., Shahidian S., da Silva J.M. et al. Mapping management zones based on soil apparent electrical conductivity and remote sensing for implementation of variable rate irrigation – case study of corn under a center pivot. Water. 2020. Vol. 12. No. 12. P. 3427.
- Svedin J.D., Kerry R., Hansen N.C., Hopkins B.G. Identifying within-field spatial and temporal crop water stress to conserve irrigation resources with variable-rate irrigation. Agronomy. 2021. Vol. 11. No. 7. P. 1377.
- Shi X., Han W., Zhao T., Tang J. Decision support system for variable rate irrigation based on UAV multispectral remote sensing. Sensors. 2019. Vol. 19. No. 13. P. 2880.
- O’Shaughnessy S.A., Evett S.R., Colaizzi P.D. et al. Identifying advantages and disadvantages of variable rate irrigation: An updated review. Appl. Eng. Agricult. 2019. Vol. 35. No. 6. Pp. 837–852.
- García L., Parra L., Jimenez J.M. et al. IoT-based smart irrigation systems: An overview on the recent trends on sensors and IoT systems for irrigation in precision agriculture. Sensors. 2020. Vol. 20. No. 4. P. 1042.
- Keswani B., Mohapatra A.G., Mohanty A. et al. Adapting weather conditions based IoT enabled smart irrigation technique in precision agriculture mechanisms. Neural Comput. Appl. 2019. Vol. 31. No. 1. Pp. 277–292.
- Wang E., Attard S., Linton A. et al. Development of a closed-loop irrigation system for sugarcane farms using the Internet of Things. Comput. Electron. Agricult. 2020. Vol. 172.
- Kamienski C., Soininen J.-P., Taumberger M. et al. Smart water management platform: IoT-based precision irrigation for agriculture. Sensors. 2019. Vol. 19. No. 2. P. 276.
- Muangprathub J., Boonnam N., Kajornkasirat S. et al. IoT and agriculture data analysis for smart farm. Comput. Electron. Agricult. 2019. Vol. 156. Pp. 467–474.
- Bonfante A., Monaco E., Manna P. et al. LCIS DSS – an irrigation supporting system for water use efficiency improvement in precision agriculture: A maize case study. Agricult. Syst. 2019. Vol. 176.
- Campos N.G.S., Rocha A.R., Gondim R. et al. Smart & green: An Internet-of-Things framework for smart irrigation. Sensors. 2020. Vol. 20. No. 1. P. 190.
- Glória A., Dionisio C., Simões G. et al. Water management for sustainable irrigation systems using Internet-of-Things. Sensors. 2020. Vol. 20. No. 5. P. 1402.
- Kujawa S., Niedbała G. Artificial neural networks in agriculture. Agriculture. 2021. Vol. 11. No. 6. P. 497.
- Jha K., Doshi A., Patel P., Shah M. A comprehensive review on automation in agriculture using artificial intelligence. Artif. Intell. Agricult. 2019. Vol. 2. Pp. 1–12.
- Linaza M.T., Posada J., Bund J. et al. Data-driven artificial intelligence applications for sustainable precision agriculture. Agronomy. 2021. Vol. 11. No. 6. P. 1227.
- Saiz-Rubio V., Rovira-Más F. From smart farming towards agriculture 5.0: A review on crop data management. Agronomy. 2020. Vol. 10. No. 2. P. 207.
- Benos L., Tagarakis A.C., Dolias G. et al. Machine learning in agriculture: A comprehensive updated review. Sensors. 2021. Vol. 21. No. 11. P. 3758.
- Cravero A., Sepúlveda S. Use and adaptations of machine learning in big data – applications in real cases in agriculture. Electronics. 2021. Vol. 10. No. 5. P. 552.
- van Klompenburg T., Kassahun A., Catal C. Crop yield prediction using machine learning: A systematic literature review. Comput. Electron. Agricult. 2020. Vol. 177.
- Gonzalez-de-Santos P., Fernández R., Sepúlveda D. et al. Field robots for intelligent farms – Inhering features from industry. Agronomy. 2020. Vol. 10. No. 11. P. 1638.
- Goap A., Sharma D., Shukla A.K., Krishna C.R. An IoT based smart irrigation management system using Machine learning and open source technologies. Comput. Electron. Agricult. 2018. Vol. 155. Pp. 41–49.
- Nawandar N.K., Satpute V.R. IoT based low cost and intelligent module for smart irrigation system. Comput. Electron. Agricult. 2019. Vol. 162. Pp. 979–990.
- Mendes W.R., Araújo F.M.U., Dutta R., Heeren D.M. Fuzzy control system for variable rate irrigation using remote sensing. Expert Syst. Appl. 2019. Vol. 124. Pp. 13–24.
- Sun A.Y., Scanlon B.R. How can big data and machine learning benefit environment and water management: A survey of methods applications and future directions. Environ. Res. Lett. 2019. Vol. 14. No. 7.
- Chang C.-L., Lin K.-M. Smart agricultural machine with a computer vision-based weeding and variable-rate irrigation scheme. Robotics. 2018. Vol. 7. No. 3. P. 38.
- Kamyshova G., Solovyev D., Terekhova N., Kolganov D. Development of approaches to the intellectualization of irrigation control systems. Agriculture Digitalization and Organic Production. 2022. Vol. 245. Pp. 359–369.
- Torres-Sanchez R., Navarro-Hellin H., Guillamon-Frutos A. et al. A decision support system for irrigation management: Analysis and implementation of different learning techniques. Water. 2020. Vol. 12. No. 2. P. 548.
- Suntaranont B., Aramkul S., Kaewmoracharoen M., Champrasert P. Water irrigation decision support system for practical weir adjustment using artificial intelligence and machine learning techniques. Sustainability. 2020. Vol. 12. No. 5. P. 1763.
- Kashyap P.K., Kumar S., Jaiswal A. et al. Towards precision agriculture: IoT-enabled intelligent irrigation systems using deep learning neural network. IEEE Sensors J. 2021. Vol. 21. No. 16. Pp. 17479–17491.
- Diao W., Liu G., Zhang H. et al. Influences of soil bulk density and texture on estimation of surface soil moisture using spectral feature parameters and an artificial neural network algorithm. Agriculture. 2021. Vol. 11. No. 8. P. 710.
- Wang J., Peng J., Li H. et al. Soil salinity mapping using machine learning algorithms with the Sentinel-2 MSI in arid areas China. Remote Sens. 2021. Vol. 13. No. 2. P. 305.
- Diez F.J., Navas-Gracia L.M., Chico-Santamarta L. et al. Prediction of horizontal daily global solar irradiation using artificial neural networks (ANNs) in the castile and León region Spain. Agronomy. 2020. Vol. 10. No. 1. P. 96.
- D’Emilio A., Aiello R., Consoli S. et al. Artificial neural networks for predicting the water retention curve of sicilian agricultural soils. Water. 2018. Vol. 10. No. 10. P. 1431.
- Cáceres G., Millán P., Pereira M., Lozano D. Smart farm irrigation: Model predictive control for economic optimal irrigation in agriculture. Agronomy. 2021. Vol. 11. No. 9. P. 1810.
- Kamyshova G.N., Soloviov D.A., Kolganov D.A. et al. Neuromodeling in irrigation management for sustainable agriculture. Adv. Dyn. Syst. Appl. 2021. Vol. 16. No. 1. Pp. 159–170.
- Glória A., Cardoso J., Sebastião P. Sustainable irrigation system for farming supported by machine learning and real-time sensor data. Sensors. 2021. Vol. 21. No. 9. P. 3079.
- Yang W., Nigon T., Hao Z. et al. Estimation of corn yield based on hyperspectral imagery and convolutional neural network. Comput. Electron. Agricult. 2021. Vol. 184.
- Pang Y., Shi Y., Gao S. et al. Improved crop row detection with deep neural network for early-season maize stand count in UAV imagery. Comput. Electron. Agricult. 2020. Vol. 178.
- Zhong L., Hu L., Zhou H. Deep learning based multi-temporal crop classification. Remote Sens. Environ. 2019. Vol. 221. Pp. 430–443.
- Kuznetsova A., Maleva T., Soloviev V. Detecting apples in orchards using YOLOv3. Proc. ICCSA. 2020. Vol. 12249. Pp. 923–934.
- Kuznetsova A., Maleva T., Soloviev V. YOLOv5 versus YOLOv3 for apple detection. Cyber-Physical Systems: Modelling and Intelligent Control, Cham. 2021. Vol. 338. Pp. 349–358.
- Kamyshova G. et al. Artificial neural networks and computer vision’s-based phytoindication systems for variable rate irrigation improving. IEEE Access. 2022. Vol. 10. Pp. 8577–8589.
- Shu Meiyan, Dong Qizhou, Fei ShuaiPeng. et al. Improved estimation of canopy water status in maize using UAV-based digital and hyperspectral images. Computers and Electronics in Agriculture. 2022. Vol. 197.
- Huang G. et al. Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2017. С. 4700–4708.
- Tsapin D., Pitelinskiy K., Suvorov S. et al. Machine learning methods for the industrial robotic systems security. J. Comput Virol Hack Tech. 2023.
- Chunhua Liao, Jinfei Wang, Bo Shan. et al. Near real-time detection and forecasting of within-field phenology of winter wheat and corn using Sentinel-2 time-series data. ISPRS Journal of Photogrammetry and Remote Sensing. 2023. Vol. 196. Pp. 105–119.
Дополнительные файлы
