Ovarian stem cells: a mini-review

Cover Page
Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract


The discovery of germline stem cells in adult human ovaries is one of the most remarkable yet controversial findings in modern developmental biology. In the present article, a brief overview is given on ovarian stem cells’ types, origin, morphofunctional features and similarities to testicular stem cells. The physiological role of postnatal neo-oogenesis and its possible participation in the pathogenesis of some gynecological diseases are discussed. Particular attention is paid to the prospects for practical application to the discovery in reproductive medicine.


Full Text

Restricted Access

About the authors

Mayya A. Shestakova

N.I. Pirogov Russian National Research Medical University

Author for correspondence.
Email: chrysolite7@gmail.com
ORCID iD: 0000-0002-6154-9481

Russian Federation, 117997, Moscow

Elena V. Proskurnina

N.P. Bochkov Research Centre for Medical Genetics

Email: proskurnina@gmail.com
ORCID iD: 0000-0002-0102-5491

Russian Federation, 115522, Moscow

MD, PhD

Mariya V. Fedorova

M.V. Lomonosov Moscow State University

Email: theklazontag@yandex.ru
ORCID iD: 0000-0002-7859-6698

Russian Federation, 119991, Moscow

Elena A. Sosnova

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: sosnova-elena@inbox.ru
ORCID iD: 0000-0002-1732-6870

Russian Federation, 119991, Moscow

MD, PhD, Professor

References

  1. Johnson J., Canning J., Kaneko T., Pru J.K., Tilly J.L. Germline stem cells and follicular renewal in the postnatal mammalian ovary. Nature. 2004; 428(6979):145-50.
  2. Yuan J., Zhang D., Wang L., Liu M., Mao J., Yin Y. et al. No evidence for neo-oogenesis may link to ovarian senescence in adult monkey. Stem Cells. 2013; 31(11): 2538-50.
  3. Bristol-Gould S.K., Kreeger P.K., Selkirk C.G., Kilen S.M., Mayo K.E., Shea L.D. et al. Fate of the initial follicle pool: empirical and mathematical evidence supporting its sufficiency for adult fertility. Dev. Biol. 2006; 298(1):149-54.
  4. Byskov A.G., Høyer P.E., Yding Andersen C., Kristensen S.G., Jespersen A., Møllgård K. No evidence for the presence of oogonia in the human ovary after their final clearance during the first two years of life. Hum. Reprod. 2011; 26(8):2129-39.
  5. Lei L., Spradling A.C. Female mice lack adult germ-line stem cells but sustain oogenesis using stable primordial follicles. Proc. Natl. Acad. Sci. USA. 2013; 110(21): 8585-90.
  6. Bhartiya D., Patel H. Ovarian stem cells — resolving controversies. J. Assist. Reprod. Genet. 2018; 35: 393-8.
  7. Horan C.J., Williams S.A. Oocyte stem cells: fact or fantasy? Reproduction. 2017; 154(1): R23-R35.
  8. Ye H., Zheng T., Li W., Li X., Fu X., Huang Y. et al. Ovarian Stem Cell Nests in Reproduction and Ovarian Aging. Cell Physiol. Biochem. 2017; 43(5):1917-25.
  9. Parte S.C., Smolenkov A., Batra S.K., Ratajczak M.Z., Kakar S.S. Ovarian Cancer Stem Cells: Unraveling a Germline Connection. Stem Cells Dev. 2017; 26(24):1781-803.
  10. Bhartiya D., Sriraman K., Parte S., Patel H. Ovarian stem cells: absence of evidence is not evidence of absence. J. Ovarian Res. 2013; 6(1):65.
  11. Zou K., Yuan Z., Yang Z., Luo H., Sun K., Zhou L. et al. Production of offspring from a germline stem cell line derived from neonatal ovaries. Nat. Cell Biol. 2009; 11(5):631-6.
  12. Patel H., Bhartiya D., Parte S., Gunjal P., Yedurkar S., Bhatt M. Follicle stimulating hormone modulates ovarian stem cells through alternately spliced receptor variant FSH-R3. J. Ovarian Res. 2013; 6: 52.
  13. Virant-Klun I., Rozman P., Cvjeticanin B., Vrtacnik-Bokal E., Novakovic S., Rülicke T. et al. Parthenogenetic embryo-like structures in the human ovarian surface epithelium cell culture in postmenopausal women with no naturally present follicles and oocytes. Stem Cells Dev. 2009; 18(1):137-49.
  14. Parte S., Bhartiya D., Telang J., Daithankar V., Salvi V., Zaveri K. et al. Detection, characterization, and spontaneous differentiation in vitro of very small embryonic-like putative stem cells in adult mammalian ovary. Stem Cells Dev. 2011; 20(8):1451-64.
  15. White Y.A., Woods D.C., Takai Y., Ishihara O., Seki H., Tilly J.L. Oocyte formation by mitotically active germ cells purified from ovaries of reproductive-age women. Nat. Med. 2012; 18(3): 413-21.
  16. Pacchiarotti J., Maki C., Ramos T., Marh J., Howerton K., Wong J. et al. Differentiation potential of germ line stem cells derived from the postnatal mouse ovary. Differentiation. 2010; 79(3):159-70.
  17. Bukovsky A., Svetlikova M., Caudle M.R. Oogenesis in cultures derived from adult human ovaries. Reprod. Biol. Endocrinol. 2005; 3:17.
  18. Bukovsky A. Novel methods of treating ovarian infertility in older and POF women, testicular infertility, and other human functional diseases. Reprod. Biol. Endocrinol. 2015; 13:10.
  19. Bukovsky A., Caudle M.R. Immunoregulation of follicular renewal, selection, POF, and menopause in vivo, vs. neo-oogenesis in vitro, POF and ovarian infertility treatment, and a clinical trial. Reprod. Biol. Endocrinol. 2012; 10: 97.
  20. Kerr J.B., Brogan L., Myers M., Hutt K.J., Mladenovska T., Ricardo S. et al. The primordial follicle reserve is not renewed after chemical or γ-irradiation mediated depletion. Reproduction. 2012; 143(4):469-76.
  21. Zou K., Hou L., Sun K., Xie W., Wu J. Improved efficiency of female germline stem cell purification using fragilis-based magnetic bead sorting. Stem Cells Dev. 2011; 20(12): 2197-204.
  22. Liu J., Shang D., Xiao Y., Zhong P., Cheng H., Zhou R. Isolation and characterization of string-forming female germline stem cells from ovaries of neonatal mice. J. Biol. Chem. 2017; 292(39):16003-13.
  23. Bukovsky A., Virant-Klun I. Adult stem cells in the human ovary. In: Simon C., Pellicer A., eds. Stem cells in reproductive medicine: basic science & therapeutic potential. London: Informa Healthcare; 2006: 53-70.
  24. Bukovsky A., Copas P., Virant-Klun I. Potential new strategies for the treatment of ovarian infertility and degenerative diseases with autologous ovarian stem cells. Expert Opin. Biol. Ther. 2006; 6(4): 341-65.
  25. Brinster R.L. Male germline stem cells: from mice to men. Science. 2007; 316(5823): 404-5.
  26. Ryu B.Y., Orwig K.E., Oatley J.M., Avarbock M.R., Brinster R.L. Effects of aging and niche microenvironment on spermatogonial stem cell self-renewal. Stem Cells. 2006; 24(6):1505-11.
  27. Anderson R., McLaughlin M., Woods D., Tilly J., Telfer E. Evaluation of oogonial stem cells and neo-oogenesis in ovaries of girls and women with Turner Syndrome. Human Reprod. 2013; 28(suppl.1): i52-i55.
  28. Niikura Y., Niikura T., Tilly J.L. Aged mouse ovaries possess rare premeiotic germ cells that can generate oocytes following transplantation into a young host environment. Aging (Albany NY). 2009; 1(12): 971-8.
  29. Fazeli Z., Abedindo A., Omrani M.D., Ghaderian S.M.H. Mesenchymal Stem Cells (MSCs) Therapy for Recovery of Fertility: a Systematic Review. Stem Cell Rev. 2017.
  30. Song D., Zhong Y., Qian C., Zou Q., Ou J., Shi Y. et al. Human Umbilical Cord Mesenchymal Stem Cells Therapy in Cyclophosphamide-Induced Premature Ovarian Failure Rat Model. Biomed. Res. Int. 2016; 2016: 2517514. doi: 10.1155/2016/2517514
  31. Lai D., Wang F., Dong Z., Zhang Q. Skin-derived mesenchymal stem cells help restore function to ovaries in a premature ovarian failure mouse model. PLoS One. 2014; 9(5): e98749.
  32. Edessy M., Hosni H.N., Wafa Y., Bakry S., Shady Y., Kamel M. Stem cells transplantation in premature ovarian failure. World J. Med. Sci. 2014; 10:12-6.
  33. Selesniemi K., Lee H.J., Niikura T., Tilly J.L. Young adult donor bone marrow infusions into female mice postpone age-related reproductive failure and improve offspring survival. Aging (Albany NY). 2008; 1(1): 49-57.
  34. Vanni V.S., Viganò P., Papaleo E., Mangili G., Candiani M., Giorgione V. Advances in improving fertility in women through stem cell-based clinical platforms. Expert Opin. Biol. Ther. 2017; 17(5): 585-93.
  35. McLaughlin M., Albertini D.F., Wallace W.H.B., Anderson R.A., Telfer E.E. Metaphase II oocytes from human unilaminar follicles grown in a multi-step culture system. Mol. Hum. Reprod. 2018; 24(3):135-42.
  36. Oatley J., Hunt P.A. Of mice and (wo)men: purified oogonial stem cells from mouse and human ovaries. Biol. Reprod. 2012; 86(6): 196.
  37. Ou X.H., Sun Q.Y. Mitochondrial replacement techniques or therapies (MRTs) to improve embryo development and to prevent mitochondrial disease transmission. J. Genet. Genomics. 2017; 44(8): 371-4.
  38. Wang Z.B., Hao J.X., Meng T.G., Guo L., Dong M.Z., Fan L.H. et al. Transfer of autologous mitochondria from adipose tissue-derived stem cells rescues oocyte quality and infertility in aged mice. Aging (Albany NY). 2017; 9(12): 2480-8.
  39. Labarta E., de Los Santos M.J., Herraiz S., Escribá M.J., Marzal A., Buigues A. et al. Autologous mitochondrial transfer as a complementary technique to intracytoplasmic sperm injection to improve embryo quality in patients undergoing in vitro fertilization — a randomized pilot study. Fertil. Steril. 2019; 111(1): 86-96.
  40. Silvestris E., D’Oronzo S., Cafforio P., D’Amato G., Loverro G. Perspective in infertility: the ovarian stem cells. J. Ovarian Res. 2015; 8: 55.
  41. Silber S., Fan Y.S., Goldsmith S. World wide update: results with cryopreserved ovarian tissue transplant. Fertil. Steril. 2019; 112(3): e85.
  42. Terraciano P.B., Garcez T.A., Berger M., Durli I., Kuhl C.P., Batista V.O. et al. Ovarian tissue vitrification is more efficient than slow freezing to preserve ovarian stem cells in CF-1 mice. JBRA Assist Reprod. 2020; 24(1):13-9.
  43. Sriraman K., Bhartiya D., Anand S., Bhutda S. Mouse Ovarian Very Small Embryonic-Like Stem Cells Resist Chemotherapy and Retain Ability to Initiate Oocyte-Specific Differentiation. Reprod. Sci. 2015; 22(7): 884-903.

Statistics

Views

Abstract - 114

PDF (Russian) - 19

Cited-By


Article Metrics

Metrics Loading ...

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies