Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


Introduction. Epstein-Barr virus (EBV) causes recurrent infectious mononucleosis-like symptoms. Today poisons of insects and animals were shown to be rich sources of antimicrobial substances (peptides) and contain a wide range of active biological compounds. Antimicrobial peptides play an important role in the immune response of the host’s innate immunity to pathogenic microorganisms. Based on antimicrobial peptides in Russia, an antiviral drug allokin-alpha has been developed. The active ingredient of the drug is cytokine-like peptide alloferon. The purpose of the study is to evaluate the effect of allokin-alpha therapy on the amount of EBV DNA in saliva samples and clinical complaints in patients with chronic Epstein-Barr viral infection (EBI). Material and methods. 59 chronic EBI patients (45 women and 14 men; mean age 32.52 ± 1.75 years) were examined. Patients were subjected to quantitative determination of Epstein-Barr virus DNA in saliva samples by the method of polymerase chain reaction (PCR) with real-time hybridization-fluorescence detection. The analytical sensitivity of the test system is 400 copies/ml. The patients were divided into two groups: 26 patients who received allokin-alpha therapy (9 injections subcutaneously with 1.0 mg every other day) were included in the 1st group; the 2nd group included 33 patients who received Valtrex (500 mg 2 times/day, orally) for 2 months. Results. After treatment with allocin-alpha, negative results of PCR were obtained in 59.67% of patients. After two months of Valtrex therapy, negative PCR results were obtained in only 27.27% of patients. The correlation analysis revealed a significant effect of the initial number of copies of EBV DNA on the severity of clinical complaints in the general group of EBV patients. Discussion. Allokin-alpha improves the recognition of virus-infected cells and helps to suppress viral replication. Conclusion. Allokin-alpha therapy can be recommended for the treatment of chronic EBV infection in a dose of 1 mg subcutaneously every other day with a course dose of at least 9 injections.

Full Text

Restricted Access

About the authors

Irina A. Rakityanskaya

Saint Petersburg Municipal City Polyclinic No 112

St. Petersburg, 195427, Russian Federation
MD, Ph.D., DSci., professor of the Outpatient Department of Allergology-Immunology and Clinical Transfusiology of the Saint Petersburg Municipal City Polyclinic No 112, St. Petersburg, 195427, Russian Federation

T. S Ryabova

Saint Petersburg Municipal City Polyclinic No 112; S.M. Kirov Military Medical Academy

St. Petersburg, 195427, Russian Federation; St. Petersburg, 194044, Russian Federation

U. A Todzhibaev

Saint Petersburg Municipal City Polyclinic No 112

St. Petersburg, 195427, Russian Federation

A. A Kalashnikova

A.M. Nikiforov All-Russian Center for Emergency and Radiation Medicine

St. Petersburg, 194044, Russian Federation


  1. Straus S.E. The chronic mononucleosis syndrome. J. Infect. Dis. 1988;157: 405-12.
  2. Hellmann D., Cowan M.J., Ammann A.J., Wara D.W., Chudwin D., Chang R.S. Chronic active Epstein-Barr virus infections in two immunodeficient patients. J. Pediatr. 1983; 103: 585-8.
  3. Choen J.L. Epstein-Barr virus infection. N. Engl. J. Med. 2000; 343: 480-92.
  4. Thorley-Lawson D.A. Epstein-Barr virus: exploiting the immune system. Nat. Rev. Immunol. 2001; 1: 75-82. doi: 10.1038/35095584
  5. Laichalk L.L., Thorley-Lawson D.A. Terminal differentiation into plasma cells initiates the replicative cycle of Epstein-Barr virus in vivo. J. Virol. 2005; 79: 1296-1307. doi: 10.1128/JVI.79.2.1296-1307.2005
  6. Kieff E., Rickinson A.B. Epstein-Barr virus and its replication. In: Knipe D.M., Howley P.M., eds. Fields Virology. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2007.
  7. Laichalk L.L., Hochberg D., Babcock G.J, Freeman R.B., Thorley-Lawson D.A. The dispersal of mucosal memory B cells: evidence from persistent EBV infection. Immunity. 2002;16:745-54.
  8. Amyes E., Hatton C., Montamat-Sicotte D., Gudgeon N., Rickinson A.B., McMichael A.J. et al. Characterization of the CD4+ T cell response to Epstein-Barr virus during primary and persistent infection. J. Exp. Med. 2003; 198(6): 903-11.
  9. Marrão G., Habib M., Paiva A., Bicout D., Fallecker C., Franco S. et al. Epstein-Barr virus infection and clinical outcome in breast cancer patients correlate with immune cell TNF-α/IFN-γ response. BMC Cancer. 2014; 14: 665.
  10. Kimura H., Hoshino Y., Kanegane H., Tsuge I., Okamura T., Kawa K. et al. Clinical and virologic characteristics of chronic active Epstein-Barr virus infection. Blood. 2001; 98: 280-6.
  11. Zhao X., Wu H., Lu H., Li G., Huang Q. Lamp: a database linking antimicrobial peptides. PLoS One. 2013; 8: e66557. doi: 10.1371/journal.pone.0066557.
  12. Conlon J.M., Sonnevend A. Antimicrobial peptides in frog skin secretions. Methods Mol. Biol. 2010; 618: 3-14.
  13. Bahar A.A., Ren D. Antimicrobial peptides. Pharmaceuticals (Basel). 2013; 6(12): 1543-75. doi: 10.3390/ph6121543.
  14. Altfeld M., Gale M.Jr. Innate immunity against HIV-1 infection. Nat. Immunol. 2015;16(6): 554-62. doi: 10.1038/ni.3157.
  15. Meije Y., Tonjes R.R., Fishman J.A. Retroviral restriction factors and infectious risk in xenotransplantation. Am. J. Transplant. 2010; 10(7): 1511-6. doi: 10.1111/j.1600-6143.2010.03146.x.
  16. Chernysh S., Kim S., Bekker G., Pleskach V.A., Filatova N.A., Anikin V.B. et al. Antiviral and antitumor peptides from insects. Proc. Natl. Acad. Sci. USA. 2002; 99(20): 12628-32. doi: [10.1073/pnas.192301899]
  17. Mabbott N.A., Brown K.L., Manson J., Bruce M.E. T-lymphocyte activation and the cellular form of the prion protein. Immunology. 1997; 92(2):161-5.
  18. Lee N., Bae S., Kim H., Kong J.M., Kim H.R., Cho B.J. et al. Inhibition of lytic reactivation of Kaposi’s sarcoma-associated herpesvirus by alloferon. Antivir. Ther. 2011; 16: 17-26.
  19. Bae S., Oh K., Kim H., Kim Y., Kim H.R., Hwang Y.I. et al. The effect of alloferon on the enhancement of NK cell cytotoxicity against cancer via the up-regulation of perforin/granzyme B secretion. Immunobiology. 2013; 218: 1026-33.
  20. Kim Y., Lee S.K., Bae S., Kim H., Park Y., Chu N.K. et al. The anti-inflammatory effect of alloferon on UVB-induced skin inflammation through the down-regulation of pro-inflammatory cytokines. Immunol. Lett. 2013;149: 110-8.
  21. Kuczer M., Dziubasik K., Midak-Siewirska A., Zahorska R., Łuczak M., Konopińska D. Studies of insect peptides alloferon, Any-GS and their analogues. Synthesis and antiherpes activity. J. Pept. Sci. 2010;16(4):186-9.
  22. Kuczer M., Majewska A., Zahorska R. New alloferon analogues: synthesis and antiviral properties. Chem. Biol. Drug Des. 2013; 81(2): 302-9. doi: 10.1111/cbdd.12020
  23. Kuczer M., Czarniewska E., Majewska A., Różanowska M., Rosiński G., Lisowski M. Novel analogs of alloferon: Synthesis, conformational studies, pro-apoptotic and antiviral activity. Bioorg. Chem. 2016; 66: 12-20. doi: 10.1016/j.bioorg.2016.03.002.
  24. Kragsbjerg P. Chronic active mononucleosis. Scand. J. Infect. Dis. 1997; 29 (5): 517-8.
  25. Gustafson E.A., Chillemi A.C., Sage D.R., Fingeroth J.D. The Epstein-Barr virus thymidine kinase does not phosphorylate ganciclovir or acyclovir and demonstrates a narrow substrate specificity compared to the herpes simplex virus type 1 thymidine kinase. Antimicrob. Agents Chemother. 1998;42(11): 2923-31.
  26. Хахалин Л.Н., Абазова Ф.И. Ацикловир при лечении острых и рецидивирующих герпесвирусных инфекций. Клин. фармакол., терапия. 1995; 4: 78-81
  27. Cohen J.I. Optimal treatment for chronic active Epstein-Barr virus disease. Pediatr. Transplant. 2009; 13(4): 393-6. doi: 10.1111/j.1399-3046.2008.01095.x
  28. De Paor M., O’Brien K., Fahey T., Smith S.M. Antiviral agents for infectious mononucleosis (glandular fever). Cochrane Database Syst. Rev. 2016; 8(12): CD011487. doi: 10.1002/14651858.
  29. Казмирчук В.Е., Мальцев Д.В. Клиника, диагностика и лечение герпесвирусных инфекций человека. К.: Феникс; 2009
  30. Martinez J.P., Sasse F., Brönstrup M., Diez J., Meyerhans A. Antiviral drug discovery: broad-spectrum drugs from nature. Nat. Prod. Rep. 2015; 32(1): 29-48. doi: 10.1039/C4NP00085D
  31. Коновалова Н.В., Храменко Н.И., Величко Л.Н., Юрченко Л.А. Роль уровня интерферонов α и γ в крови больных увеитами вирусной этиологии под влиянием лечения препаратом аллокин-альфа. Точка зрения. Восток - Запад. 2018; (4): 26-9. DOI:
  32. Серебряков М.Ю., Тищенко М.С., Воронов А.В., Салимов А.Г., Сметанина С.Е., Платонова Т.К. и др. Новые подходы к лечению больных ВЭБ-инфекцией. В кн.: Сборник научных трудов по препарату Аллокин-альфа. М.; 2016: 181-4.



Abstract - 32

PDF (Russian) - 0


Article Metrics

Metrics Loading ...


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies