THE CLINICAL SIGNIFICANCE OF STEM CELLS IN CERVICAL DISEASES

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract


Stem cells are cells capable of self-sustaining asymmetric division, resulting in one daughter cell and one progenitor cell from one stem cell. The features of stem cells are the ability to self-renew and differentiate into various cells, ensure hemostasis of tissues, as well as proliferative reserve. The maintenance and functional properties of stem cells are regulated by signals from the stem cell niche, i.e. from their local microenvironment, which contributes to adequate self-renewal and differentiation. Therefore, niches provide regulation of the number of stem cells in the body and protect the body from their excessive proliferation. Structurally, the stem niche is a combination of all factors that ensure the viability and self-reproduction of stem cells and the differentiation of daughter progenitor cells. An example of a stem cell niche can be the transition zone (TZs) - the junction of different types of epithelial tissue. It is believed that carcinogenesis can be associated with these zones: the transition region of the glandular and squamous epithelium in the conjunctiva, the cervical glands of the stomach, in the esophagus, in the lungs (bronchioalveolar transition zone), in the cervix (endo-ectocervical transition). This article discusses modern approaches to the search for significant markers of the state of stem cell niche and tumor stem cells of cervical cancer, which will be of great importance in clinical practice for the timely detection of oncological processes, even before their phenotypic manifestation.

Full Text

Restricted Access

About the authors

Ara L. Unanyan

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: 9603526@mail.ru
119991, Moscow, Russian Federation
MD, professor, Department of Obstetrics and Gynecology No. 1 of the I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991, Russian Federation

E. A Kogan

I.M. Sechenov First Moscow State Medical University (Sechenov University)

119991, Moscow, Russian Federation

M. V Berishvili

I.M. Sechenov First Moscow State Medical University (Sechenov University)

119991, Moscow, Russian Federation

M. N Zholobova

I.M. Sechenov First Moscow State Medical University (Sechenov University)

119991, Moscow, Russian Federation

L. G Pivazyan

I.M. Sechenov First Moscow State Medical University (Sechenov University)

119991, Moscow, Russian Federation

D. N Baburin

I.M. Sechenov First Moscow State Medical University (Sechenov University)

119991, Moscow, Russian Federation

References

  1. Егоров Е.Е., Казимирчук Е.В., Терехов С.М. и др. Иммортализация клеток человека и индукция синтеза ДНК в гетерокарионах. Молек. биол. 2002; 36: 94-5.
  2. Пальцев М.А., Терских В.В., Васильев А.В. Биология стволовых клеток и клеточные технологии. М.; 2009: 1: 13-4.
  3. Сухих Г.Т., Назаренко Т.А. Бесплодный брак. Современные подходы к диагностике и лечению: руководство. М.; 2010.
  4. Olive P.L., Luo C.M., Banath J.P. Locfl hypoxia is produced at sites of intratumour injection. Br. J. Cancer. 2002; 86: 429-35.
  5. Terskikh V.V., Vasiliev A.V., Vorotelyak E.A. Stem cell niches. Biology Bulletin. 2007; 34 (3): 211-20.
  6. Пикалюк В.С., Шаймарданова Л.Р. Современные аспекты системы стволовых клеток. Клиническая анатомия и оперативная хирургия. 2008; 7 (4): 95
  7. Walker M.R., Patel K.K., Stappenbeck T.S. The stem cell niche. J. Pathol. 2009; 217 (2): 169-80.
  8. Mcnairn A.J., Guasch G. Epithelial transition zones: merging microenvironments, niches, and cellular transformation. Eur. J. Dermatol. 2011; 21 (Suppl. 2): 21-8.
  9. Reya T., Morrison S.J., Clarke M.F. et al. Stem cells, cancer, and cancer stem cells. Nature. 2001; 414: 105-11.
  10. Al-Hajj M., Becker M.W., Wicha M. et al. Therapeutic implications of cancer stem cells. Curr. Opin. Genet. Dev. 2004; 14: 43-7.
  11. Dressel R., Schindehtte J., Kuhlmann T. et al. The tumorigenicity of mouse embryonic stem cells and in vitro differentiated neuronal cells is controlled by the recipients’ immune response. PLoS ONE. 2008; 3 (7): 2622-34.
  12. Унанян А.Л., Макаров И.О., Саранцев А.Н., Зыков А.Е., Карпова М.А., Евтина И.П. Особенности терапии при дисплазии шейки матки. В кн.: Амбулаторно-поликлиническая практика - новые горизонты. Сборник тезисов Всероссийского Конгресса. М.; 2010: 328-9.
  13. Подистов Ю.И., Лактионов К.П., Петровичев Н.И., Брюзгин В.В. Эпителиальные дисплазии шейки матки (диагностика и лечение). М.: ГЭОТАР-Медиа; 2006.
  14. Martens J.E., Arends J., Van der Linden P.J., De Boer B.A., Helmerhorst T.J. Cytokeratin 17 and p63 are markers of the HPV target cell, the cervical stem cell. Hum. Pathol. 2005; 36: 932-3; author reply 934-5.
  15. Li A., Simmons P.J., Kaur P. Identification and isolation of putative cervical stem cells based on cell surface phenotype. Proc. Natl. Acad. Sci. USA. 1998; 95: 3902-7.
  16. Yao T., Chen Q., Zhang B., Zhou H., Lin Z. The expression of ALDH1 in cervical carcinoma. Med. Sci. Monit. 2011; 17(8): HY21-26.
  17. Ji J., Zheng P.S. Expression of Sox2 in human cervical carcinogenesis. Hum. Pathol. 2010; 41(10):1438-47.
  18. Wang S.H., Tsai M.S., Chiang M.F., Li H. A novel NK-type homeobox gene, ENK (early embryo specific NK), preferentially expressed in embryonic stem cells. Gene Expr. Patterns. 2003; 3: 99-103.
  19. Chambers I., Colby D., Robertson M., Nichols J., Lee S., Tweedie S., Smith A. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell. 2003; 113: 643-55.
  20. Beekman C., Nichane M., De Clercq S., Maetens M., Floss T., Wurst W. et al. Evolutionarily conserved role of nucleostemin (NS): controlling proliferation of stem/progenitor cells during early vertebrate development. Mol. Cell Biol. 2006; 26(24): 9291-301.
  21. Miyanoiri Y., Kobayashi H., Imai T., Watanabe M., Nagata T., Uesugi S. et al. Origin of higher affinity to RNA of the N-terminal RNA-binding domain than that of the C-terminal one of a mouse neural protein, musashi1, as revealed by comparison of their structures, modes of interaction, surface electrostatic potentials, and backbone dynamics. J. Biol. Chem. 2003; 278(42):41309-15.
  22. Imai T., Tokunaga A., Yoshida T., Hashimoto M., Mikoshiba K., Weinmaster G. et al. The neural RNA-binding protein musashi1 translationally regulates mammalian numb gene expression by interacting with its mRNA. Mol. Cell Biol. 2001; 21(12): 3888-3900.
  23. Mathieu J., Zhang Z., Zhou W., Wang A.J., Heddleston J.M., Pinna C.M. et al. HIF induces human embryonic stem cell markers in cancer cells. Cancer Res. 2011; 71(13): 4640-52.
  24. Masaki Inoue, Satoru Kyo, Masami Fujita, Takayuki Enomoto and Gen Kondoh. Coexpression of the c-KIT receptor and the stem cell factor in gynecological tumors. Cancer Res. 1994; 54 (11): 3049-53.
  25. Ledwaba T., Dlamini Z., Naicker S., Bhoola K. Molecular genetics of human cervical cancer: role of papillomavirus and the apoptotic cascade. Biol. Chem. 2004; 385: 671-82.

Statistics

Views

Abstract - 41

PDF (Russian) - 0

Cited-By


Article Metrics

Metrics Loading ...

Refbacks

  • There are currently no refbacks.

Copyright (c) 2019 Eco-Vector



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies