ФАРМАЦЕВТИЧЕСКАЯ ХИМИЯ, ФАРМАКОГНОЗИЯ (14.04.02)

УДК 547.9

https://doi.org/10.17816/2072-2354.2020.20.1.152-157

ОПРЕДЕЛЕНИЕ АНТИМИКРОБНОЙ АКТИВНОСТИ СПИРТОВЫХ ИЗВЛЕЧЕНИЙ КОРЫ И ПОЧЕК ДУБА ЧЕРЕШЧАТОГО

Н.А. Рябов, В.А. Куркин, В.М. Рыжов, А.В. Лямин, А.В. Жестков, А.А. Сохина

Федеральное государственное бюджетное образовательное учреждение высшего образования «Самарский государственный медицинский университет» Министерства здравоохранения Российской Федерации, Самара

Для цитирования: Рябов Н.А., Куркин В.А., Рыжов В.М., и др. Определение антимикробной активности спиртовых извлечений коры и почек дуба черешчатого // Аспирантский вестник Поволжья. -2020. -№ 1–2. - C. 152–157. https://doi.org/10.17816/ 2072-2354.2020.20.1.152-157

Поступила: 22.01.2020 Одобрена: 24.02.2020 Принята: 16.03.2020

- Изучена антимикробная активность спиртовых извлечений из надземных органов коры и почек дуба черешчатого Quercusrobur L. — представителя семейства Буковые (Fagáceae). Определение минимальной ингибирующей концентрации (МИК) проводили с помощью метода двойных серийных разведений в бульоне [6, 7]. В качестве тестовых культур использовали следующие микроорганизмы: Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli, Bacilluscereus, Candida albicans. По результатам микробиологического анализа было установлено, что спиртовые извлечения из коры и почек дуба черешчатого оказывают антимикробное действие в отношении всех указанных штаммов при однократном разведении (кроме антимикробной активности в отношении Staphylococcus aureus при 70 % извлечении коры дуба). В частности, относительно высокая антимикробная активность наблюдалась у извлечений из почек дуба на 40, 70 и 96 % этиловом спирте в отношении Candida albicans при разведении 2, 4 и 8 раз и Escherichia coli при разведении 4, 8 и 16 раз. Наибольшим антимикробным действием в отношении Pseudomonas aeruginosa обладают извлечения из коры и почек всех исследуемых концентраций спирта. Значительным выраженным антимикробным действием в отношении Escherichia coli обладает 40 % извлечение почек дуба при разведении в 2, 4, 8, 16, 32 и 64 раза. Полученные результаты могут быть использованы как обоснование для внедрения нового вида сырья — почек дуба черешчатого, а также препаратов на его основе — в Государственную фармакопею Российской Федерации в качестве антибактериальных средств.
- Ключевые слова: Quercus robur L.; Fagáceae; спиртовые извлечения; кора; почки; антимикробная активность.

DETERMINATION OF ANTIMICROBIAL ACTIVITY OF ALCOHOL EXTRACTIONS OF BARK AND BUDS OF QUERCUS ROBUR L.

N.A. Ryabov, V.A. Kurkin, V.M. Rizhov, A.V. Lyamin, A.V. Zhestkov, A.A. Sokhina

Samara State Medical University, Samara, Russia

For citation: Ryabov NA, Kurkin VA, Rizhov VM, et al. Determination of antimicrobial activity of alcohol extractions of bark and buds of *Quercus robur* L. *Aspirantskiy Vestnik Povolzhiya*. 2020;(1-2):152-157. https://doi.org/10.17816/2072-2354.2020.20.1.152-157

Received: 22.01.2020 Revised: 24.02.2020 Accepted: 16.03.2020

• Antimicrobial activity of alcoholic extractions from the aboveground organs like bark and buds of *Quercus robur* L. was studied. The determination of the minimum inhibitory concentration (MIC) was performed with the use of double serial dilution in broth. The following microorganisms were used as test cultures: *Bacillus cereus, Candida albicans, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus.* It has been revealed that alcoholic extractions of the bark of *Quercus robur* have the widest spectrum of antibacterial activity in relation to *Pseudomonas aeruginosa, Escherichia coli* and *Candida albicans.* Results of microbiological analysis show that alcoholic extractions from the bark and buds have an antimicrobial effect on all of these strains with a single dilution (except for antimicrobial activity against *Staphylococcus aureus* with 70% extractions of bark of *Quercus robur*). In particular, relatively high antimicrobial activity was observed in alcoholic extracts of all buds concentrations against *Candida albicans* at a dilution of 2, 4 and 8 times and *Escherichia coli* at a dilution of 4, 8 and 16 times. The greatest antimicrobial effect against *Pseudomonas aeruginosa* has extracts from the bark and buds in all the studied concentrations of alcohol. A significant antimicrobial effect against *Escherichia coli* has 40% of extractions from the buds of *Quercus robur* when diluted by

2, 4, 8, 16, 32 and 64 times. The results can be used as justification for the introduction of a new type of raw material that is buds of *Quercus robur*, as well as drugs based on it in the State Pharmacopoeia of the Russian Federation as antibacterial phytopharmaceuticals.

• Keywords: Quercus robur L.; Fagáceae; bark; buds; alcohol extractions; antimicrobial activity.

Введение

В настоящее время в медицине наблюдается возрастающий интерес к препаратам растительного происхождения. Это связано с широким спектром биологически активных соединений (БАС), содержащихся в лекарственных растениях, и безопасностью их применения. По литературным данным известно, что извлечения из коры дуба черешчатого обладают антимикробной и противовоспалительной активностью ввиду высокого содержания фенольных соединений, в частности — дубильных веществ [1-4]. В настоящее время фармакопейным сырьем дуба черешчатого является только кора [1, 2], однако целесообразным является изучение и других надземных органов с целью обнаружения и подтверждения антимикробной активности. В данном аспекте интерес представляют такие надземные органы дуба черешчатого, как почки.

Целью исследования являлось скрининговое изучение антибактериальной активности спиртовых извлечений из надземных органов дуба черешчатого — коры и почек.

Результаты и их обсуждение

Объектами исследования являлись спиртовые извлечения из надземных органов представителя семейства Буковые (*Fagáceae*). Использовались кора и почки дуба череш-

чатого Quercus robur L. Кора промышленного образца (АО «Красногорсклексредства» г. Красногорск) и почки (Самарская обл., Похвистневский р-н, с. Первомайск, 2018 г.).

В качестве тестовых культур для определения антимикробной активности образцов настоек нами были использованы следующие микроорганизмы: Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli, Bacillus cereus, Candida albicans.

Для проведения эксперимента были получены настойки из коры и почек дуба черешчатого *Quercus robur* L. по классической технологии.

Определение минимальной ингибирующей концентрации проводили методом двойных серийных разведений в бульоне в соответствии с МУК 4.2.1890-04 [6, 9].

По результатам микробиологического анализа было установлено, что 40 % спиртовое извлечение из коры дуба черешчатого фармакопейного вида оказывает антимикробное действие в отношении всех указанных штаммов при однократном разведении. В частности, Candida albicans при разведении в 2 раза. Наибольшее антимикробное действие в отношении Pseudomonas aeruginosa и Escherichia coli при разведении в 2, 4, 8, и 16 раз (табл. 1).

Для 70 % спиртового извлечения коры дуба черешчатого наблюдалась активность относительно следующих штаммов: для *Staphylococcus*

<u>Таблица 1 / Table 1</u> **Антимикробная активность спиртового извлечения из коры дуба черешчатого (40 %) Antimicrobial activity of alcohol extraction from the bark of** *Quercus robur* **(40%)**

Штамм микроорганизма	Порядковый номер разведения												
	1	2	3	4	5	6	7	8	9	10	11	12	
Pseudomonas aeruginosa	Роста нет	Роста нет	Роста нет	Роста нет	Роста нет	Рост							
Staphylococcus aureus	Роста нет	Рост	Рост	Рост	Рост	Рост	Рост	Рост	Рост	Рост	Рост	Рост	
Escherichia coli	Роста нет	Роста нет	Роста нет	Роста нет	Роста нет	Рост							
Bacillus cereus	Роста нет	Рост	Рост	Рост	Рост	Рост	Рост	Рост	Рост	Рост	Рост	Рост	
Candida albicans	Роста нет	Роста нет	Рост	Рост	Рост	Рост	Рост	Рост	Рост	Рост	Рост	Рост	

Таблица 2 / Table 2

Антимикробная активность спиртового извлечения из коры дуба черешчатого (70 %) Antimicrobial activity of alcohol extraction from the bark of *Quercus robur* (70%)

Штамм	Порядковый номер разведения												
микроорганизма	1	2	3	4	5	6	7	8	9	10	11	12	
Pseudomonas aeruginosa	Роста нет	Роста нет	Роста нет	Роста нет	Роста нет	Рост							
Staphylococcus aureus	Рост	Рост	Рост	Рост	Рост	Рост	Рост	Рост	Рост	Рост	Рост	Рост	
Escherichia coli	Роста нет	Рост	Рост	Рост	Рост	Рост	Рост	Рост	Рост	Рост	Рост	Рост	
Bacillus cereus	Роста нет	Рост	Рост	Рост	Рост	Рост	Рост	Рост	Рост	Рост	Рост	Рост	
Candida albicans	Роста нет	Рост	Рост	Рост	Рост	Рост	Рост	Рост	Рост	Рост	Рост	Рост	

Таблица 3 / Table 3

Антимикробная активность спиртового извлечения из коры дуба черешчатого (96 %) Antimicrobial activity of alcohol extraction from the bark of *Quercus robur* (96%)

Штамм	Порядковый номер разведения												
микроорганизма	1	2	3	4	5	6	7	8	9	10	11	12	
Pseudomonas aeruginosa	Роста нет	Роста нет	Роста нет	Роста нет	Роста нет	Рост							
Staphylococcus aureus	Роста нет	Рост	Рост	Рост	Рост	Рост	Рост	Рост	Рост	Рост	Рост	Рост	
Escherichia coli	Роста нет	Роста нет	Роста нет	Роста нет	Рост	Рост	Рост	Рост	Рост	Рост	Рост	Рост	
Bacillus cereus	Роста нет	Рост	Рост	Рост	Рост	Рост	Рост	Рост	Рост	Рост	Рост	Рост	
Candida albicans	Роста нет	Рост	Рост	Рост	Рост	Рост	Рост	Рост	Рост	Рост	Рост	Рост	

Таблица 4 / Table 4

Антимикробная активность спиртового извлечения из почек дуба черешчатого (40 %) Antimicrobial activity of alcohol extraction from the buds of *Quercus robur* (40%)

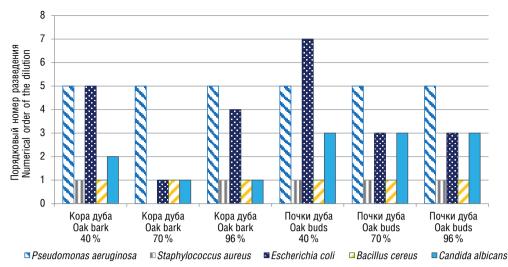
Штамм микроорганизма	Порядковый номер разведения													
	1	2	3	4	5	6	7	8	9	10	11	12		
Pseudomonas aeruginosa	Роста нет	Роста нет	Роста нет	Роста нет	Роста нет	Рост	Рост	Рост	Рост	Рост	Рост	Рост		
Staphylococcus aureus	Роста нет	Рост	Рост	Рост	Рост	Рост	Рост	Рост	Рост	Рост	Рост	Рост		
Escherichia coli	Роста нет	Роста нет	Роста нет	Роста нет	Роста нет	Роста нет	Роста нет	Рост	Рост	Рост	Рост	Рост		
Bacillus cereus	Роста нет	Рост	Рост	Рост	Рост	Рост	Рост	Рост	Рост	Рост	Рост	Рост		
Candida albicans	Роста нет	Роста нет	Роста нет	Рост	Рост	Рост	Рост	Рост	Рост	Рост	Рост	Рост		

Антимикробная активность спиртового извлечения из почек дуба черешчатого (70 %) Antimicrobial activity of alcohol extraction from the buds of Quercus robur (70%)

Таблица 5 / Table 5

Штамм	Порядковый номер разведения												
микроорганизма	1	2	3	4	5	6	7	8	9	10	11	12	
Pseudomonas aeruginosa	Роста нет	Роста нет	Роста нет	Роста нет	Роста нет	Рост							
Staphylococcus aureus	Роста нет	Рост	Рост	Рост	Рост	Рост	Рост	Рост	Рост	Рост	Рост	Рост	
Escherichia coli	Роста нет	Роста нет	Роста нет	Рост	Рост	Рост	Рост	Рост	Рост	Рост	Рост	Рост	
Bacillus cereus	Роста нет	Рост	Рост	Рост	Рост	Рост	Рост	Рост	Рост	Рост	Рост	Рост	
Candida albicans	Роста нет	Роста нет	Роста нет	Рост	Рост	Рост	Рост	Рост	Рост	Рост	Рост	Рост	

aureus антимикробной активности при данной концентрации спиртового извлечения не выявлено; Pseudomonas aeruginosa, Escherichia coli, Bacillus cereus, Candida albicans при однократном разведении. При дальнейшем разведении извлечения сохранялась активность в отношении Pseudomonas aeruginosa (до разведения в 16 раз). Начиная с шестого по порядку разведения наблюдался рост всех тестируемых микроорганизмов (табл. 2).


Извлечение на 96 % этиловом спирте из коры дуба черешчатого проявляло антибактериальную активность в отношении всех указанных штаммов. В частности, установлено, что данное спиртовое извлечение активно в отношении всех перечисленных штаммов при однократном разведении. При дальнейшем разведении наблюдалось проявление антимикробной активности в отношении Escherichia coli — при разведении в 2, 4 и 8 раз и наибольшее антимикробное действие в отношении Pseudomonas aeruginosa — при разведении в 2, 4, 8 и 16 раз (табл. 3).

По результатам анализа для извлечения из почек дуба черешчатого на основе 40 % спиртом выявлена антибактериальная активность в отношении всех указанных штаммов. В частности, для Staphylococcus aureus и Bacilluscereus отмечена антимикробная активность при однократном разбавлении. Для Candida albicans при разбавлении в 2 и 4 раза. Сравнительно высокая антимикробная активность наблюдалась у Pseudomonas aeruginosa — при разбавлении в 2, 4, 8 и 16 раз. Наибольшая антимикробная активность отмечена для Escherichia coli — при разведении в 2, 4, 8, 16 и 32 раза (табл. 4).

По результатам анализа извлечения почек дуба черешчатого на основе 70 % спирта выявлена антибактериальная активность в отношении всех указанных штаммов. В частности, для Staphylococcus aureus и Bacillus cereus отмечена антимикробная активность при однократном разбавлении. Для Candida albicans и Escherichia coli — при разбавлении в 2 и 4 раза. Сравнительно высокая антимикробная активность наблюдалась в отношении Pseudomonas aeruginosa — при разбавлении в 2, 4, 8 и 16 раз (табл. 5).

Аналогичные результаты анализа получены для извлечения из почек дуба черешчатого на 96 % спирте. В частности, для Staphylococcus aureus и Bacillus cereus отмечена антимикробная активность при однократном разбавлении. Для Candida albicans и Escherichia coli — при разбавлении в 2 и 4 раза. Сравнительно высокая антимикробная активность наблюдалась у Pseudomonas aeruginosa — при разбавлении в 2, 4, 8 и 16 раз.

В сравнительном аспекте спиртовые извлечения коры и почек дуба черешчатого обладают наиболее широким спектром антимикробного действия. Согласно результатам анализа выявлено, что наиболее широким спектром антибактериальной активности обладают спиртовые извлечения почек дуба черешчатого в отношении Pseudomonas aeruginosa, Escherichia coli и Candida albicans, из которых извлечение на 40 % спирте в большей степени подавляет рост штамма кишечной палочки (Escherichia coli). Для спиртовых извлечений коры дуба характерно узконаправленное действие в отношении Pseudomonas aeruginosa и Escherichia coli. Все спиртовые извлечения всех концентраций проявляют сходную активность и подавляют рост всех представленных штаммов (кроме 70 % извлечения в отношении Staphylococcus aureus) (см. рисунок).

Сравнительная диаграмма антибактериальной активности спиртовых извлечений коры и почек дуба черешчатого

Comparative diagram of the antibacterial activity of alcohol extractions from the bark and buds of Quercus robur

Заключение

Таким образом, было проведено скрининговое исследование антибактериальной активности спиртовых извлечений коры и почек дуба черешчатого Quercus robur L., представителя семейства Fagaceae. Выявлено, что наиболее широким спектром антибактериальной активности обладают спиртовые извлечения из коры и почек дуба черешчатого в отношении Pseudomonas aeruginosa и Escherichia coli. Характерно узконаправленное действие в отношении Escherichia coli спиртового 40 % извлечения почек дуба. Не было выявлено антимикробной активности извлечения на 70 % этиловом спирте из коры дуба в отношении Staphylococcus aureus (см. рисунок).

Авторы заявляют об отсутствии конфликта интересов.

Литература

- Государственная фармакопея Российской Федерации. Вып. 2. XIV изд. М.: Медицина, 2018. С. 2327–2348. [Gosudarstvennaya farmakopeya Rossiiskoy Federatsii. Issue 2. XIVth ed. Moscow: Meditsina; 2018. P. 2327–2348. (In Russ.)]
- Государственная фармакопея Российской Федерации. Вып. 4. XIV изд. М.: Медицина, 2018. С. 6494–6500. [Gosudarstvennaya farmakopeya Rossiiskoy Federatsii. Issue 4. XIVth ed. Moscow: Meditsina; 2018. P. 6494–6500. (In Russ.)]

• Информация об авторах

Николай Анатольевич Рябов — аспирант кафедры фармакогнозии с ботаникой и основами фитотерапии, ФГБОУ ВО «Самарский государственный медицинский университет» Минздрава России, Самара. E-mail: ryabov. nikolay.2014@mail.ru.

- 3. Куркин В.А. Основы фитотерапии: учебное пособие для студентов фармацевтических вузов. Самара: Офорт, 2009. 963 с. [Kurkin VA. Osnovy fitoterapii: uchebnoe posobie dlya studentov farmatsevticheskikh vuzov. Samara: Ofort; 2009. 963 р. (In Russ.)]
- Куркин В.А. Фармакогнозия: учебник для студентов фармацевтических вузов. Изд. 2-е, перераб. и доп. Самара: Офорт, 2007. 1239 с. [Kurkin VA. Farmakognoziya: uchebnik dlya studentov farmatsevticheskikh vuzov. 2nd revised and updated. Samara: Ofort; 2007. 1239 p. (In Russ.)]
- Муравьева Д.А., Самылина И.А., Яковлев Г.П. Фармакогнозия: учебник. М.: Медицина, 2002. 656 с. [Murav'eva DA, Samylina IA, Yakovlev GP. Farmakognoziya: uchebnik. Moscow: Meditsina; 2002. 656 р. (In Russ.)]
- 6. Определение чувствительности микроорганизмов к антибактериальным препаратам. Методические указания. МУК 4.2.1890-04 // Клиническая микробиология и антимикробная химиотерапия. 2004. Т. 6. № 4. С. 306—359. [The definition of the sensitivity of microorganisms to antibacterial drugs. Guidelines. MUK 4.2.1890-04. Clinical microbiology and antimicrobial chemotherapy. 2004;6(4):306-359. (In Russ.)]
- Tomczyk M, Latte KP. Potentilla A review of its phytochemical and pharmacological profile. *J Ethno*pharmacology. 2009;122(2)184-204. https://doi.org/ 10.1016/j.jep.2008.12.022.
- 8. Tomczyk M, Leszczynska K, Jakoniuk P. Antimicrobial activity of Potentilla species. *Fitoterapia*. 2008;79(7-8): 592-594. https://doi.org/10.1016/j.fitote.2008.06.006.

Information about the authors

Nikolay A. Ryabov — Postgraduate student, Department of Pharmacognosy with Botany and Bases of Phytotherapy, Samara State Medical University, Samara, Russia. E-mail: ryabov.nikolay.2014@mail.ru.

Владимир Александрович Куркин — доктор фармацевтических наук, профессор, заведующий кафедрой фармакогнозии с ботаникой и основами фитотерапии, ФГБОУ ВО «Самарский государственный медицинский университет» Минздрава России, Самара. E-mail: kurkinvladimir@yandex.ru.

Виталий Михайлович Рыжов — кандидат фармацевтических наук, доцент кафедры фармакогнозии с ботаникой и основами фитотерапии, ФГБОУ ВО «Самарский государственный медицинский университет» Минздрава России, Самара. E-mail: lavr_rvm@mail.ru.

Артем Викторович Лямин — кандидат медицинских наук, доцент кафедры общей и клинической микробиологии, иммунологии и аллергологии, ФГБОУ ВО «Самарский государственный медицинский университет» Минздрава России, Самара. E-mail: avlyamin@rambler.ru.

Александр Викторович Жестков — доктор медицинских наук, профессор, заведующий кафедрой общей и клинической микробиологии, иммунологии и аллергологии, ФГБОУ ВО «Самарский государственный медицинский университет» Минздрава России, Самара. E-mail: avzhestkov2015@yandex.ru.

Анна Аркадьевна Сохина — кандидат фармацевтических наук, старший преподаватель кафедры фармацевтической технологии, ФГБОУ ВО «Самарский государственный медицинский университет» Минздрава России, Самара. Email: annasohina381@gmail.com.

Vladimir A. Kurkin — Doctor of Pharmaceutical Sciences, Professor, Head of the Department of Pharmacognosy with Botany and Bases of Phytotherapy, Samara State Medical University, Samara, Russia. E-mail: kurkinvladimir@yandex.ru.

Vitaliy M. Ryzhov — Candidate of Pharmaceutical Sciences, Associate Professor of the Department of Pharmacognosy with Botany and Bases of Phytotherapy, Samara State Medical University, Samara, Russia. E-mail: lavr_rvm@mail.ru.

Artem V. Lyamin — Candidate of Medical Sciences, Associate Professor of the Department of General and Clinical Microbiology, Immunology and Allergology, Samara State Medical University, Samara, Russia. E-mail: avlyamin@rambler.ru.

Alexander V. Zhestkov — Doctor of Medical Sciences, Professor, Head of the Department of General and Clinical Microbiology, Immunology and Allergology, Samara State Medical University, Samara, Russia. E-mail: avzhestkov2015@yandex.ru.

Anna A. Sokhina — Candidate of Pharmaceutical Sciences, Senior lecturer of the Department of Pharmaceutical Technology, Samara State Medical University, Samara, Russia. Email: annasohina381@gmail.com.