Diagnostic capabilities of the analysis of exhaled air biochemical composition in respiratory diseases

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Respiratory diseases diagnostics is a complex task for modern medicine, especially when using traditional methods associated with invasiveness and risks for patients. Exhaled air analysis based on the study of volatile organic compounds offers a non-invasive, rapid and accurate approach for detecting diseases such as chronic obstructive pulmonary disease, asthma, lung cancer, pneumonia and COVID-19. The aim of the research is to evaluate the diagnostic capabilities of exhaled air biochemical analysis for detection of various respiratory pathologies and determine the key advantages and limitations of this method. Exhaled air analysis is a promising diagnostic tool due to its non-invasiveness, high sensitivity and the possibility of repeated use. Despite the need for standardization of the method, its use has significant potential for improving the diagnosis and monitoring of respiratory diseases in clinical practice.

Full Text

Restricted Access

About the authors

Anna V. Teteneva

Siberian State Medical University; Primary Healthcare Unit No. 2

Author for correspondence.
Email: anna.dubodelova@mail.ru
ORCID iD: 0000-0002-4323-2798
SPIN-code: 9472-4472
Scopus Author ID: 57214109808

MD, Dr. Sci. (Medicine), Professor of the Department of Internal Disease Propaedeutics with a Course in Therapy of the Faculty of Pediatrics; Deputy Chief Physician for Clinical and Expertise Work

Russian Federation, 2, Moskovsky Tract St., Tomsk, 634050; 3, Béla Kun Str., Tomsk, 634040

Inna D. Bespalova

Siberian State Medical University

Email: bespalova.id@ssmu.ru
ORCID iD: 0000-0002-4513-6329
SPIN-code: 6852-6200
Scopus Author ID: 55820749900

MD, Dr. Sci. (Medicine), Head and Professor of the Department of Internal Disease Propaedeutics with a Course in Therapy of the Faculty of Pediatrics

Russian Federation, 2, Moskovsky Tract St., Tomsk, 634050

Nikolay D. Yarovoy

Siberian State Medical University; Primary Healthcare Unit No. 2

Email: koly-yarovoy@yandex.ru
ORCID iD: 0000-0003-3619-6095
SPIN-code: 1707-4330

Resident of the Department of Biochemistry and Molecular Biology with a Course of Clinical Laboratory Diagnostics; Physician-Statistician

Russian Federation, 2, Moskovsky Tract St., Tomsk, 634050; 3, Béla Kun Str., Tomsk, 634040

Vladimir I. Chernov

Tomsk National Research Medical Center of the Russian Academy of Sciences

Email: achernov@tnimc.ru
ORCID iD: 0000-0001-8753-7916

MD, Dr. Sci. (Medicine), Professor, Corresponding Member of the RAS, Deputy Director for Research and Innovation Work, Head of the Department of Radionuclide Therapy and Diagnostics of the Research Institute of Oncology

Russian Federation, 5, Kooperativny Lane, Tomsk, 634009

Viktor I. Sachkov

National Research Tomsk State University

Email: Vicsachkov@outlook.com
ORCID iD: 0000-0001-7866-274X

Dr. Sci. (Chemistry), Associate Professor, Head of the Department of Chemical Technologies, Head of the Innovation and Technology Center of the Siberian Physics and Technology Institute

Russian Federation, 36, Lenin Ave., Tomsk, 634050

Tatiana V. Sorokina

Siberian State Medical University

Email: gbsmp.sorokinatatyana@mail.ru
ORCID iD: 0000-0002-6264-4632

MD, Head of the Therapeutic Clinic – Therapist

Russian Federation, 2, Moskovsky Tract St., Tomsk, 634050

Sofia V. Nesterovich

Siberian State Medical University

Email: nesterovich.sv@ssmu.ru
ORCID iD: 0000-0003-2098-2964

MD, PhD (Medicine), Chief Physician

Russian Federation, 2, Moskovsky Tract St., Tomsk, 634050

Denis I. Radionov

Minusinsk Interdistrict Hospital

Email: radionovdenis12@gmail.ru
ORCID iD: 0009-0004-2863-2736

MD, Therapist

Russian Federation, 2a, Botanicheskaya St., Minusinsk, 662606

Ekaterina V. Radionova

Minusinsk Interdistrict Hospital

Email: Opoldnik@yandex.ru
ORCID iD: 0000-0002-0696-2951

MD, Therapist

Russian Federation, 2a, Botanicheskaya St., Minusinsk, 662606

References

  1. Hashoul D, Haick H. Sensors for detecting pulmonary diseases from exhaled breath. Eur Respir Rev. 2019;28(152):190011. PMID: 31243097. PMCID: PMC9489036. https://doi.org/10.1183/16000617.0011-2019
  2. van de Kant KDG, van der Sande LJTM, Jobsis Q, van Schayck OCP, Dompeling E. Clinical use of exhaled volatile organic compounds in pulmonary diseases: A systematic review. Respir Res. 2012;13(1):117. PMID: 23259710. PMCID: PMC3549749. https://doi.org/10.1186/1465-9921-13-117
  3. Hunt J. Exhaled breath condensate: An evolving tool for noninvasive evaluation of lung disease. J Allergy Clin Immunol. 2002;110(1):28–34. PMID: 12110814. https://doi.org/10.1067/MAI.2002.124966
  4. Popov TA. Human exhaled breath analysis. Ann Allergy Asthma Immunol. 2011;106(6):451–57. PMID: 21624743. https://doi.org/10.1016/j.anai.2011.02.016
  5. Pereira J, Porto-Figueira P, Cavaco C, Taunk K, Rapole S, Dhakne R et al. Breath analysis as a potential and non-Invasive frontier in disease diagnosis: An overview. Metabolites. 2015;5(1):3–55. PMID: 25584743. PMCID: PMC4381289. https://doi.org/10.3390/metabo5010003
  6. Cepelak I, Dodig S. Exhaled breath condensate: A new method for lung disease diagnosis. Clin Chem Lab Med. 2007;45(8):945–52. PMID: 17867983. https://doi.org/10.1515/cclm.2007.326
  7. Fens N, Zwinderman AH, van der Schee MP, de Nijs SB, Dijkers E, Roldaan AC et al. Exhaled breath profiling enables discrimination of chronic obstructive pulmonary disease and asthma. Am J Respir Crit Care Med. 2009;180(11):1076–82. PMID: 19713445. https://doi.org/10.1164/rccm.200906-0939OC
  8. Aroutiounian VM. Exhaled breath semiconductor sensors for diagnostics of respiratory diseases. Armenian Journal of Physics. 2022;15(1):13–24. https://doi.org/10.54503/18291171-2022.15.1-13
  9. Ibrahim W, Carr L, Cordell R, Wilde MJ, Salman D, Monks PS et al. Breathomics for the clinician: The use of volatile organic compounds in respiratory diseases. Thorax. 2021;76(6):514–21. PMID: 33414240. PMCID: PMC7611078. https://doi.org/10.1136/thoraxjnl-2020-215667
  10. Amann A, Miekisch W, Schubert J, Buszewski B, Ligor T, Jezierski T et al. Analysis of exhaled breath for disease detection. Annu Rev Anal Chem (Palo Alto Calif). 2014;7:455–82. PMID: 25014347. https://doi.org/10.1146/annurev-anchem-071213-020043
  11. Wallace MAG, Pleil JD. Evolution of clinical and environmental health applications of exhaled breath research: Review of methods and instrumentation for gas-phase, condensate, and aerosols. Anal Chim Acta. 2018;1024:18–38. PMID: 29776545. PMCID: PMC6082128. https://doi.org/10.1016/j.aca.2018.01.069
  12. Konstantinidi EM, Lappas AS, Tzortzi AS, Behrakis PK. Exhaled breath condensate: Technical and diagnostic aspects. ScientificWorldJournal. 2015;2015:435160. PMID: 26106641. PMCID: PMC4461795. https://doi.org/10.1155/2015/435160
  13. Chien P-J, Suzuki T, Tsujii M, Ye M, Toma K, Arakawa T et al. Bio-sniffer (gas-phase biosensor) with secondary alcohol dehydrogenase (S-ADH) for determination of isopropanol in exhaled air as a potential volatile biomarker. Biosens Bioelectron. 2017;91:341–46. PMID: 28043076. https://doi.org/10.1016/j.bios.2016.12.050
  14. Maximova EN, Markov VF, Bezdetnova AE, Shashmurin YuG, Maskaeva LN, Dyakov VF. Using of chemical sensors for rapid diagnostic tests of exhaled air. Butlerov Communications. 2019;60(12):25–28. https://doi.org/10.37952/roi-jbc-01/19-60-12-25
  15. Smith D, Spanel P, Herbig J, Beauchamp J. Mass spectrometry for real-time quantitative breath analysis. J Breath Res. 2014;8(2):027101. PMID: 24682047. https://doi.org/10.1088/1752-7155/8/2/027101
  16. Lawal O, Ahmed WM, Nijsen TME, Goodacre R, Fowler SJ. Exhaled breath analysis: A review of ‘breath-taking’ methods for off-line analysis. Metabolomics. 2017;13(10):110. PMID: 28867989. PMCID: PMC5563344. https://doi.org/10.1007/s11306-017-1241-8
  17. Almstrand A-C, Josefson M, Bredberg A, Lausmaa J, Sjövall P, Larsson P, Olin A-C. TOF-SIMS analysis of exhaled particles from patients with asthma and healthy controls. Eur Respir J. 2011;39(1):59–66. PMID: 21719486. https://doi.org/10.1183/09031936.00195610
  18. Montuschi P, Corradi M, Ciabattoni G, Nightingale J, Kharitonov SA, Barnes PJ. Increased 8-isoprostane, a marker of oxidative stress, in exhaled condensate of asthma patients. Am J Respir Crit Care Med. 1999;160(1):216–20. PMID: 10390403. https://doi.org/10.1164/ajrccm.160.1.9809140
  19. Battaglia S, den Hertog H, Timmers MC, Lazeroms SPG, Vignola AM, Rabe KF et al. Small airways function and molecular markers in exhaled air in mild asthma. Thorax. 2005;60(8):639–44. PMID: 16061704. PMCID: PMC1747499. https://doi.org/10.1136/thx.2004.035279
  20. Kharitonov SA, Chung KF, Evans D, O’Connor BJ, Barnes PJ. Increased exhaled nitric oxide in asthma is mainly derived from the lower respiratory tract. Am J Respir Crit Care Med. 1996;153(6 Pt 1):1773–80. PMID: 8665033. https://doi.org/10.1164/AJRCCM.153.6.8665033
  21. Ragnoli B, Radaeli A, Pochetti P, Kette S, Morjaria J, Malerba M. Fractional nitric oxide measurement in exhaled air (FeNO): Perspectives in the management of respiratory diseases. Ther Adv Chronic Dis. 2023;14:20406223231190480. PMID: 37538344. PMCID: PMC10395178. https://doi.org/10.1177/20406223231190480
  22. Carraro S, Rezzi S, Reniero F, Héberger K, Giordano G, Zanconato S et al. Metabolomics applied to exhaled breath condensate in childhood asthma. Am J Respir Crit Care Med. 2007;175(10):986–90. PMID: 17303796. https://doi.org/10.1164/rccm.200606-769OC
  23. Neerincx AH, Vijverberg SJH, Bos LDJ, Brinkman P, van der Schee MP, de Vries R et al. Breathomics from exhaled volatile organic compounds in pediatric asthma. Pediatr Pulmonol. 2017;52(12):1616–27. PMID: 29082668. https://doi.org/10.1002/ppul.23785
  24. Azim A, Barber C, Dennison P, Riley J, Howarth P. Exhaled volatile organic compounds in adult asthma: A systematic review. Eur Respir J. 2019;54(3):1900056. PMID: 31273044. https://doi.org/10.1183/13993003.00056-2019
  25. Титова Н.Д., Новиков П.Д. Рекомендации по диагностике и противорецидивному лечению бронхиальной астмы у детей дошкольного возраста. Иммунопатология, аллергология, инфектология. 2020;(1):63–70. [Titova ND, Novikov PD. Recommendations for diagnosis and anti-relapse treatment of bronchial asthma in preschool children. Immunopatologiya, allergologiya, infektologiya = Immunopathology, Allergology, Infectology. 2020;(1):63–70 (In Russ.)]. EDN: FECEPD. https://doi.org/10.14427/jipai.2020.1.63
  26. Khamas SS, Bahmani AHA, Vijverberg SJH, Brinkman P, van der Zee AHM. Exhaled volatile organic compounds associated with risk factors for obstructive pulmonary diseases: A systematic review. ERJ Open Res. 2023;9(4):00143-2023. PMID: 37650089. PMCID: PMC10463028. https://doi.org/10.1183/23120541.00143-2023
  27. Силантьев А.С., Туттер Д.С., Быкова А.А., Кардонский Д.А., Бетелин В.Б., Чомахидзе П.Ш., Копылов Ф.Ю. Волатомика в здравоохранении: технические основы и клиническое применение. Российский журнал персонализированной медицины. 2023;3(1):98–108. [Silantyev AS, Tuter DS, Bykova AA, Kardonsky DA, Betelin VB, Chomakhidze PSh, Kopylov FYu. Volatomics in healthcare: Technical basis and clinical application. Rossiiskiy zhurnal personalizirovannoy meditsiny = Russian Journal of Personalized Medicine. 2023;3(1):98–108 (In Russ.)]. EDN: TLTRWT. https://doi.org/10.18705/2782-3806-2023-3-1-98-108
  28. Cazzola M, Segreti A, Capuano R, Bergamini A, Martinelli E, Calzetta L et al. Analysis of exhaled breath fingerprints and volatile organic compounds in COPD. COPD Research and Practice. 2015;1:1–8. https://doi.org/10.1186/S40749-015-0010-1
  29. Gaugg MT, Nussbaumer-Ochsner Y, Bregy L, Engler A, Stebler N, Gaisl T et al. Real-time breath analysis reveals specific metabolic signatures of COPD exacerbations. Chest. 2019;156(2):269–76. PMID: 30685334. https://doi.org/10.1016/j.chest.2018.12.023
  30. Kharitonov SA, Barnes PJ. Biomarkers of some pulmonary diseases in exhaled breath. Biomarkers. 2002;7(1):1–32. PMID: 12101782. https://doi.org/10.1080/13547500110104233
  31. Antus B, Kardos Z. Oxidative stress in COPD: Molecular background and clinical monitoring. Curr Med Chem. 2015;22(5):627–50. PMID: 25585265. https://doi.org/10.2174/092986732205150112104411
  32. Mutti A, Corradi M, Goldoni M, Vettori MV, Bernard A, Apostoli P. Exhaled metallic elements and serum pneumoproteins in asymptomatic smokers and patients with COPD or asthma. Chest. 2006;129(5):1288–97. PMID: 16685021. PMCID: PMC1472634. https://doi.org/10.1378/chest.129.5.1288
  33. Глухова М.В. Маркеры воспаления в диагностике легкой бронхиальной астмы у детей. Дисс. … канд. мед. наук. М. 2022; 102 с. Доступ: https://www.dissercat.com/content/markery-vospaleniya-v-diagnostike-legkoi-bronkhialnoi-astmy-u-detei (дата обращения – 07.05.2025). [Glukhova MV. Markers of inflammation in the diagnosis of mild bronchial asthma in children. Dissertation for the title of PhD in Medical Sciences. Moscow. 2022; 102 pp. URL: https://www.dissercat.com/content/markery-vospaleniya-v-diagnostike-legkoi-bronkhialnoi-astmy-u-detei (date of access – 07.05.2025) (In Russ.)]. EDN: NFNDCA.
  34. Majewska E, Kasielski M, Luczyński R, Bartosz G, Białasiewicz P, Nowak D. Elevated exhalation of hydrogen peroxide and thiobarbituric acid reactive substances in patients with community acquired pneumonia. Respir Med. 2004;98(7):669–76. PMID: 15250234. https://doi.org/10.1016/j.rmed.2003.08.015
  35. Boshier PR, Mistry V, Cushnir JR, Curtis S, Elkin S, Kon OM et al. S128 Analysis of volatile biomarkers within exhaled breath for the diagnosis of pneumonia. Thorax. 2010;65:A58–A59. https://doi.org/10.1136/thx.2010.150946.29
  36. van Oort PMP, de Bruin S, Weda H, Knobel HH, Schultz MJ, Bos LD on behalf of The Mars Consortium. Exhaled breath metabolomics for the diagnosis of pneumonia in intubated and mechanically-ventilated intensive care unit (ICU)-patients. Int J Mol Sci. 2017;18(2):449. PMID: 28218729. PMCID: PMC5343983. https://doi.org/10.3390/ijms18020449
  37. Carraro S, Andreola B, Alinovi R, Corradi M, Freo L, Da Dalt L, Baraldi E. Exhaled leukotriene B4 in children with community acquired pneumonia. Pediatr Pulmonol. 2008;43(10):982–86. PMID: 18781641. https://doi.org/10.1002/ppul.20889
  38. van Oort PM, Póvoa P, Schnabel R, Dark P, Artigas A, Bergmans DCJJ et al. The potential role of exhaled breath analysis in the diagnostic process of pneumonia – a systematic review. J Breath Res. 2018;12(2):024001. PMID: 29292698. https://doi.org/10.1088/1752-7163/aaa499
  39. Raman R, Patel KJ, Ranjan K. COVID-19: Unmasking emerging SARS-CoV-2 variants, vaccines and therapeutic strategies. Biomolecules. 2021;11(7):993. PMID: 34356617. PMCID: PMC8301790. https://doi.org/10.3390/biom11070993
  40. Wallace MAG, Pleil JD. Evolution of clinical and environmental health applications of exhaled breath research: Review of methods and instrumentation for gas-phase, condensate, and aerosols. Anal Chim Acta. 2018;1024:18–38. PMID: 29776545. PMCID: PMC6082128. https://doi.org/10.1016/j.aca.2018.01.069
  41. Yang L, Zhou W, Ma J, Sun L, Zhai D, Ren G-Q et al. Ultrafast screening of COVID-19 by machine learning analysis of exhaled NO. Research Square. 2020. https://doi.org/10.21203/rs.3.rs-56416/v1
  42. Grassin-Delyle S, Roquencourt C, Moine P, Saffroy G, Carn S., Heming N et al.; Garches COVID-19 Collaborative Group RECORDS Collaborators and Exhalomics® Collaborators. Metabolomics of exhaled breath in critically ill COVID-19 patients: A pilot study. EBioMedicine. 2020;63:103154. PMID: 33279860. PMCID: PMC7714658. https://doi.org/10.1016/j.ebiom.2020.103154
  43. Ibrahim W, Cordell RL, Wilde MJ, Richardson M, Carr L, Dasi ASD et al. Diagnosis of COVID-19 by exhaled breath analysis using gas chromatography – mass spectrometry. ERJ Open Res. 2021;7(3):00139-2021. PMID: 34235208. PMCID: PMC8255539. https://doi.org/10.1183/23120541.00139-2021
  44. Barberis E, Amede E, Khoso S, Castello L, Sainaghi PP, Bellan M et al. Metabolomics diagnosis of COVID-19 from exhaled breath condensate. Metabolites. 2021;11(12):847. PMID: 34940605. PMCID: PMC8708149. https://doi.org/10.3390/metabo11120847
  45. Duan C, Buerer L, Wang J, Kaplan S, Sabalewski G, Jay GD et al. Efficient detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from exhaled breath. J Mol Diagn. 2021;23(12):1661–70. PMID: 34600137. PMCID: PMC8480135. https://doi.org/10.1016/j.jmoldx.2021.09.005
  46. Ghumra DP, Shetty N, McBrearty KR, Puthussery JV, Sumlin BJ, Gardiner WD et al. Rapid direct detection of SARS-CoV-2 aerosols in exhaled breath at the point of care. ACS Sens. 2023;8(8):3023–31. PMID: 37498298. PMCID: PMC10463275. https://doi.org/10.1021/acssensors.3c00512
  47. Susanto AD, Agustin H, Taufik M, Rahman MA, Hidayat M. Accuracy of volatile organic compound (VOC) detection in exhaled breath compared to reverse-transcriptase polymerase chain reaction (RT-PCR) for diagnosis of COVID-19: An evidence-based case report. Archives of Clinical Infectious Diseases. 2022;17(5):e119263. https://doi.org/10.5812/archcid-119263
  48. Nwanochie E, Linnes JC. Review of non-invasive detection of SARS-CoV-2 and other respiratory pathogens in exhaled breath condensate. J Breath Res. 2022;16(2):10.1088/1752-7163/ac59c7. PMID: 35235925. PMCID: PMC9104940. https://doi.org/10.1088/1752-7163/ac59c7
  49. Giovannini G, Haick H, Garoli D. Detecting COVID-19 from breath: A game changer for a big challenge. ACS Sens. 2021;6(4):1408–17. PMID: 33825440. PMCID: PMC8043202. https://doi.org/10.1021/acssensors.1c00312
  50. Sutaria SR, Gori SS, Morris JD, Xie Z, Fu X-A, Nantz MH. Lipid peroxidation produces a diverse mixture of saturated and unsaturated aldehydes in exhaled breath that can serve as biomarkers of lung cancer – a review. Metabolites. 2022;12(6):561. PMID: 35736492. PMCID: PMC9229171. https://doi.org/10.3390/metabo12060561
  51. Ligor M, Ligor T, Bajtarevic A, Ager C, Pienz M, Klieber M et al. Determination of volatile organic compounds in exhaled breath of patients with lung cancer using solid phase microextraction and gas chromatography mass spectrometry. Clin Chem Lab Med. 2009;47(5):550–60. PMID: 19397483. https://doi.org/10.1515/cclm.2009.133
  52. Wang C, Dong R, Wang X, Lian A, Chi C, Ke C et al. Exhaled volatile organic compounds as lung cancer biomarkers during one-lung ventilation. Sci Rep. 2014;4:7312. PMID: 25482491. PMCID: PMC4258651. https://doi.org/10.1038/srep07312
  53. Sakumura Y, Koyama Y, Tokutake H, Hida T, Sato K, Itoh T et al. Diagnosis by volatile organic compounds in exhaled breath from lung cancer patients using support vector machine algorithm. Sensors (Basel). 2017;17(2):287. PMID: 28165388. PMCID: PMC5335963. https://doi.org/10.3390/s17020287
  54. Bajtarevic A, Ager C, Pienz M, Klieber M, Schwarz K, Ligor M et al. Noninvasive detection of lung cancer by analysis of exhaled breath. BMC Cancer. 2009;9:348. PMID: 19788722. PMCID: PMC2761408. https://doi.org/10.1186/1471-2407-9-348
  55. Gaspar EM, Lucena AF, da Costa JD, das Neves HC. Organic metabolites in exhaled human breath – a multivariate approach for identification of biomarkers in lung disorders. J Chromatogr A. 2009;1216(14):2749–56. PMID: 19036381. https://doi.org/10.1016/j.chroma.2008.10.125
  56. Oguma T, Nagaoka T, Kurahashi M, Kobayashi N, Yamamori S, Tsuji C et al. Clinical contributions of exhaled volatile organic compounds in the diagnosis of lung cancer. PLoS One. 2017;12(4):e0174802. PMID: 28384298. PMCID: PMC5383041. https://doi.org/10.1371/journal.pone.0174802
  57. Gashimova EM, Temerdashev AZ, Porkhanov VA, Polyakov IS, Perunov DV, Osipova AK, Dmitrieva EV. Assessment of a possibility to differentiate the tumor histological type and localization in patients with lung cancer by the composition of exhaled air. Journal of Analytical Chemistry. 2021;76:975–80. https://doi.org/10.1134/S1061934821080050
  58. Guzman-Beltran S, Carreto-Binaghi LE, Carranza C, Torres M, Gonzalez Y, Munoz-Torrico M, Juárez E. Oxidative stress and inflammatory mediators in exhaled breath condensate of patients with pulmonary tuberculosis. A pilot study with a biomarker perspective. Antioxidants (Basel). 2021;10(10):1572. PMID: 34679707. PMCID: PMC8533495. https://doi.org/10.3390/antiox10101572
  59. Phillips M, Cataneo RN, Condos R, Erickson GAR, Greenberg J, La Bombardi V et al. Volatile biomarkers of pulmonary tuberculosis in the breath. Tuberculosis (Edinb). 2007;87(1):44–52. PMID: 16635588. https://doi.org/10.1016/j.tube.2006.03.004
  60. Zetola NM, Modongo C, Matsiri O, Tamuhla T, Mbongwe B, Matlhagela K et al. Diagnosis of pulmonary tuberculosis and assessment of treatment response through analyses of volatile compound patterns in exhaled breath samples. J Infect. 2017;74(4):367–76. PMID: 28017825. PMCID: PMC5337142. https://doi.org/10.1016/j.jinf.2016.12.006
  61. Wang CH, Liu CY, Lin HC, Yu CT, Chung KF, Kuo HP. Increased exhaled nitric oxide in active pulmonary tuberculosis due to inducible NO synthase upregulation in alveolar macrophages. Eur Respir J. 1998;11(4): 809–15. PMID: 9623681. https://doi.org/10.1183/09031936.98.11040809
  62. Patterson B, Morrow C, Singh V, Moosa A, Gqada M, Woodward J et al. Detection of Mycobacterium tuberculosis bacilli in bio-aerosols from untreated TB patients. Gates Open Res. 2017;1:11. PMID: 29355225. PMCID: PMC5757796. https://doi.org/10.12688/gatesopenres.12758.2
  63. Chen D, Bryden NA, Bryden WA, McLoughlin M, Smith D, Devin AP et al. Non-volatile organic compounds in exhaled breath particles correspond to active tuberculosis. Sci Rep. 2022;12(1):7919. PMID: 35562381. PMCID: PMC9106714. https://doi.org/10.1038/s41598-022-12018-6
  64. Griese M, Noss J, Schramel P. Elemental and ion composition of exhaled air condensate in cystic fibrosis. J Cyst Fibros. 2003;2(3):136–42. PMID: 15463862. https://doi.org/10.1016/S1569-1993(03)00062-6
  65. Montuschi P, Kharitonov SA, Ciabattoni G, Corradi M, van Rensen L, Geddes DM et al. Exhaled 8-isoprostane as a new non-invasive biomarker of oxidative stress in cystic fibrosis. Thorax. 2000;55(3):205–9. PMID: 10679539. PMCID: PMC1745696. https://doi.org/10.1136/thorax.55.3.205
  66. Lucidi V, Ciabattoni G, Bella S, Barnes PJ, Montuschi P. Exhaled 8-isoprostane and prostaglandin E(2) in patients with stable and unstable cystic fibrosis. Free Radic Biol Med. 2008;45(6):913–19. PMID: 18634869. https://doi.org/10.1016/j.freeradbiomed.2008.06.026
  67. Paredi P, Kharitonov SA, Leak D, Shah PL, Cramer D, Hodson ME, Barnes PJ. Exhaled ethane is elevated in cystic fibrosis and correlates with carbon monoxide levels and airway obstruction. Am J Respir Crit Care Med. 2000;161(4 Pt 1):1247–51. PMID: 10764319. https://doi.org/10.1164/ajrccm.161.4.9906122
  68. Carpagnano GE, Barnes PJ, Geddes DM, Hodson ME, Kharitonov SA. Increased leukotriene B4 and interleukin-6 in exhaled breath condensate in cystic fibrosis. Am J Respir Crit Care Med. 2003;167(8):1109–12. PMID: 12684249. https://doi.org/10.1164/rccm.200203-179OC
  69. Paredi PL, Shah P, Montuschi P, Sullivan P, Hodson ME, Kharitonov SA, Barnes PJ. Increased carbon monoxide in exhaled air of patients with cystic fibrosis. Thorax. 1999;54(10):917–20. PMID: 10491455. PMCID: PMC1745371. https://doi.org/10.1136/thx.54.10.917
  70. Barker M, Hengst M, Schmid J, Buers H-J, Mittermaier B, Klemp D, Koppmann R. Volatile organic compounds in the exhaled breath of young patients with cystic fibrosis. Eur Respir J. 2006;27(5):929–36. PMID: 16455833. https://doi.org/10.1183/09031936.06.00085105
  71. Robroeks CMHHT, van Berkel JJBN, Dallinga JW, Jöbsis Q, Zimmermann LJI, Hendriks HJE et al. Metabolomics of volatile organic compounds in cystic fibrosis patients and controls. Pediatr Res. 2010;68(1):75–80. PMID: 20351658. https://doi.org/10.1203/pdr.0b013e3181df4ea0
  72. Gaisl T, Bregy L, Stebler N, Gaugg MT, Bruderer T, García-Gómez D et al. Real-time exhaled breath analysis in patients with cystic fibrosis and controls. J Breath Res. 2018;12(3):036013. PMID: 29555894. https://doi.org/10.1088/1752-7163/aab7fd

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Bionika Media