PHARMACOECONOMIC STUDY OF THE USE OF FOSFOMYCIN AND FLUOROQUINOLONES FOR URINARY TRACT SANITATION IN ORTHOPAEDIC PATIENTS


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

Urinary tract (UT) infections are among the most common bacterial diseases worldwide and the most common cause of antibiotic prescriptions and infection-related hospitalizations. The aim of the study: to perform a clinical and economic evaluation of the implementation of a local UT sanitation protocol based on the analysis of the spectrum dynamics and sensitivity to fosfomycin and fluoroquinolones of leading microorganisms isolated from the urine of patients admitted for elective hip (THA) or knee (KJ) arthroplasty during the period 2018-2020. Material and methods. A retrospective analysis of urine microbiological findings in patients admitted for elective hip or knee arthroplasty between 2018 and 2020 was performed. All positive results without regard to the obtained bacterial titer were included in the study. Leading pathogens included microorganisms with a proportion of more than 5%. Pharmacoeconomic modeling of fosfomycin and fluoroquinolones use for UT sanitation of was performed. Medical costs for a course of UT sanitation with these antibiotics were calculated, efficiency of each strategy was calculated, cost-effectiveness ratio was calculated, cost-minimization analysis was carried out. Results. During the study period 872 positive urine cultures were obtained and 1266 microorganisms were isolated. E coli (43%), K pneumoniae (16%), E faecalis (15%) were leading in the spectrum of uropathogens. The proportion of ESBL producers, among E colisolates, was 32,2%, K pneumoniae -37,7%. The majority of E coli, K pneumoniae strains retain sensitivity to fosfomycin (99 and 79%), sensitivity to fluoroquinolones is much lower (53 and 46%), the proportion of E. faecalis strains sensitive to ciprofloxacin was 76,5%. Direct medical costs for a course of UT sanitation with fluoroquinolones are 32% higher than with fosfomycin. The strategy efficiency of using fosfomycin (EF) was 70%, and fluoroquinolones - 47%; the cost-effectiveness ratio (CER) for fluoroquinolones was 2,2 times higher than for fosfomycin. Conclusion. Taking into account the spectrum of pathogens of UT infection, their sensitivity to antibacterial agents, data of the pharmacoeconomic study, we can conclude that it is reasonable to include fosfomycin in the local protocol for UT sanitation in orthopaedic patients.

Негізгі сөздер

Толық мәтін

Рұқсат жабық

Авторлар туралы

Olga Tufanova

R.R. Vreden National Medical Research Centre of Traumatology and Orthopedics of the Ministry of Healthcare of Russia

Email: katieva@mail.ru
clinical pharmacologist 195427, Saint Petersburg, 8 Akademika Baykova Str

Alina Kasimova

R.R. Vreden National Medical Research Centre of Traumatology and Orthopedics of the Ministry of Healthcare of Russia; Academician I.P. Pavlov First Saint Petersburg State Medical University of the Ministry of Healthcare of Russia

Email: kasi-alina0yandex.ru
PhD in Medicine, clinical pharmacologist; associate professor of the Department of clinical pharmacology and evidence-based medicine 195427, Saint Petersburg, 8 Akademika Baykova Str

Ekaterina Gordina

R.R. Vreden National Medical Research Centre of Traumatology and Orthopedics of the Ministry of Healthcare of Russia

Email: emgordina@win.rniito.ru
PhD in Medicine, senior researcher at the Scientific Department of prevention and treatment of wound infection 195427, Saint Petersburg, 8 Akademika Baykova Str

Anna Rukina

R.R. Vreden National Medical Research Centre of Traumatology and Orthopedics of the Ministry of Healthcare of Russia

Email: anrukina@win.rnnto.ru
head of the Central Clinical Diagnostic Laboratory, junior researcher at the Scientific Department for the prevention and treatment of wound infection 195427, Saint Petersburg, 8 Akademika Baykova Str

Svetlana Bozhkova

R.R. Vreden National Medical Research Centre of Traumatology and Orthopedics of the Ministry of Healthcare of Russia

Email: clinpharm-rniito@yandex.ru
Dr. med. habil., associate professor, head of Scientific Department for the prevention and treatment of wound infection 195427, Saint Petersburg, 8 Akademika Baykova Str

Әдебиет тізімі

  1. Masajtis-Zagajewska A., Nowicki M. New markers of urinary tract infection. Clin Chim Acta. 2017; 471: 286-91. https://dx.doi.org/10.1016/j.cca.2017.06.003.
  2. Stefaniuk E., Suchocka U., Bosacka K., Hryniewicz W. Etiology and antibiotic susceptibility of bacterial pathogens responsible for community-acquired urinary tract infections in Poland. Eur J Clin Microbiol Infect Dis. 2016; 35(8): 1363-69. https://dx.doi.org/10.1007/s10096-016-2673-1.
  3. Foxman B., Barlow R., D'Arcy H. et al. Urinary tract infection: Self-reported incidence and associated costs. Ann Epidemiol. 2000; 10(8): 509-15. https://dx.doi.org/10.1016/s1047-2797(00)00072-7.
  4. Палагин И.С., Сухорукова М.В., Дехнич А.В. с соавт.; исследовательская группа «ДАРМИС-2018». Состояние антибиотикорезистентности возбудителей внебольничных инфекций мочевыводящих путей в России, Беларуси и Казахстане: результаты многоцентрового международного исследования «ДАРМИС-2018». Урология. 2020; 1: 19-31. https://dx.doi.org/10.18565/urology.2020.1.19-31
  5. Lu C.L., Liu C.Y., Huang Y.T. et al. Antimicrobial susceptibilities of commonly encountered bacterial isolates to fosfomycin determined by agar dilution and disk diffusion methods. Antimicrob Agents Chemother. 2011; 55(9): 4295-301. https://dx.doi.org/10.1128/AAC.00349-11.
  6. Kohler C.D., Dobrindt U. What defines extraintestinal pathogenic Escherichia coli? Int J Med Microbiol. 2011; 301(8): 642-47. https://dx.doi.org/10.1016/j.ijmm.201 1.09.006.
  7. Torres-Puig S., Garcia V., Staerk K. et al. «Omics» technologies - what have they told us about uropathogenic Escherichia coli fitness and virulence during urinary tract infection? Front Cell Infect Microbiol. 2022; 12: 824039. https://dx.doi.org/10.3389/fcimb.2022.824039.69
  8. Hall A.J. Late infection about a total knee prosthesis. Report of a case secondary to urinary tract infection. J Bone Joint Surg Br. 1974; 56(1): 144-47.
  9. D'Ambrosia R.D., Shoji H., Heater R. Secondarily infected total joint replacements by hematogenous spread. J Bone Joint Surg Am. 1976; 58(4): 450-53.
  10. Peng L., Zeng Y., Wu Y. et al. Preoperative bacteriuria positivity on urinalysis increases wound complications in primary total hip arthroplasty regardless of the urine culture result. BMC Musculoskelet Disord. 2021; 22(1): 834. https://dx.doi.org/10.1186/s12891-021-04725-4.
  11. David T.S., Vrahas M.S. Perioperative lower urinary tract infections and deep sepsis in patients undergoing total joint arthroplasty. J Am Acad Orthop Surg. 2000; 8(1): 66-74. https://dx.doi.org/10.5435/00124635-200001000-00007.
  12. Gallegos Salazar J., O'Brien W., Strymish J.M. et al. Association of screening and treatment for preoperative asymptomatic bacteriuria with postoperative outcomes among US veterans. JAMA Surg. 2019; 154(3): 241-48. https://dx.doi.org/10.1001/jamasurg.2018.4759.
  13. Аляев Ю.Г, Глыбочко П.В., Пушкарь Д.Ю. Урология. Российские клинические рекомендации. М.: ГЭОТАР-Медиа. 2016; 496 с. ISBN: 978-5-9704-3649-3.
  14. Nicolle L.E., Bradley S., Colgan R. et al; Infectious Diseases Society of America; American Society of Nephrology; American Geriatric Society. Infectious Diseases Society of America guidelines for the diagnosis and treatment of asymptomatic bacteriuria in adults. Clin Infect Dis. 2005; 40(5): 643-54. https://dx.doi.org/10.1086/427507. Erratum in: Clin Infect Dis. 2005; 40(10): 1556.
  15. Котов С.В., Пульбере С.А., Беломытцев С.В. с соавт. Антибиотикорезистентность - новый вызов современной урологии. Экспериментальная и клиническая урология. 2020; 5: 113-119. https://dx.doi.org/10.29188/2222-8543-2020-13-5-113-119.
  16. Bush K., Bradford P.A. Epidemiology of B-lactamase-producing pathogens. Clin Microbiol Rev. 2020; 33(2): e00047-19. https://dx.doi.org/10.1128/CMR.00047-19.
  17. Pereira J.L., Volcao, L.M., Klafke G.B. et al. Antimicrobial resistance and molecular characterization of extended-spectrum B-lactamases of Escherichia coli and Klebsiella spp. Isolates from urinary tract infections in Southern Brazil. Microb Drug Resist. 2019; 25(2): 173-81. https://dx.doi.org/10.1089/mdr.2018.0046.
  18. Sadler S., Holmes M., Ren S. et al. Cost-effectiveness of antibiotic treatment of uncomplicated urinary tract infection in women: a comparison of four antibiotics. BJGP Open. 2017; 1(3): bjgpopen17X101097. https://dx.doi.org/10.3399/bjgpopen17X101097.
  19. Perrault L., Dahan S., Iliza A.C. et al. Cost-effectiveness analysis of fosfomycin for treatment of uncomplicated urinary tract infections in Ontario. Can J Infect Dis Med Microbiol. 2017; 2017: 6362804. https://dx.doi.org/10.1155/2017/6362804.
  20. The European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint tables for interpretation of MICs and zone diameters. URL: http://www.eucast.org (date of access - 04.04.2022).
  21. Gomez-Ochoa S.A., Espin-Chico B.B., Garcia-Rueda N.A. et al. Risk of surgical site infection in patients with asymptomatic bacteriuria or abnormal urinalysis before joint arthroplasty: Systematic review and meta-analysis. Surg Infect (Larchmt). 2019; 20(3):159-66. https://dx.doi.org/10.1089/sur.2018.201.
  22. Garrigues G.E., Zmistowski B., Cooper A.M., Green A.; ICM Shoulder Group. Proceedings from the 2018 International Consensus Meeting on Orthopedic Infections: Evaluation of periprosthetic shoulder infection. J Shoulder Elbow Surg. 2019; 28(6S): S32-S66. https://dx.doi.org/10.1016/j.jse.2019.04.016.
  23. Кульчавеня Е.В., Чередниченко А.Г, Шевченко С.Ю. с соавт. Динамика структуры и чувствительности уропатогенов в Новосибирске. Эффективная фармакотерапия. 2015; 18: 10-14.
  24. Schito G.C., Naber K.G., Botto H. et al. The ARESC study: An international survey on the antimicrobial resistance of pathogens involved in uncomplicated urinary tract infections.Int J Antimicrob Agents. 2009; 34(5): 407-13. https://dx.doi.org/10.1016/j.ijantimicag.2009.04.012.
  25. Allerberger F., Klare I. In-vitro activity of fosfomycin against vancomycin-resistant enterococci. J Antimicrob Chemother. 1999; 43(2): 211-17. https://dx.doi.org/10.1093/jac/43.2.211.
  26. Perri M.B., Hershberger E., Ionescu M. et al. In vitro susceptibility of vancomycin-resistant enterococci (VRE) to fosfomycin. Diagn Microbiol Infect Dis. 2002; 42(4): 269-71. https://dx.doi.org/10.1016/s0732-8893(02)00370-x.
  27. Lopez-Montesinos I., Horcajada J.P. Oral and intravenous fosfomycin in complicated urinary tract infections. Rev Esp Quimioter. 2019; 32 Suppl 1(Suppl 1): 37-44.
  28. Bader M.S., Hawboldt J., Brooks A. Management of complicated urinary tract infections in the era of antimicrobial resistance. Postgrad Med. 2010; 122(6): 7-15. https://dx.doi.org/10.3810/pgm.2010.11.2217.
  29. Capri S., Del Bono G.P., Dellamano R. Cost-effectiveness comparison of single and multiple-dose antibiotic treatment of lower uncomplicated urinary tract infections. J Chemother. 1992; 4(3): 171-75. https://dx.doi.org/10.1080/1120009x.1992.11739159.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bionika Media, 2022

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>