Роль самоконтроля гликемии в лечении пациентов с сахарным диабетом 2-го типа и достижении целевого уровня показателей углеводного обмена

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Самоконтроль глюкозы – важная часть терапии сахарного диабета (СД) как 1-го, так и 2-го типа. Независимо от вида получаемой терапии, пациенты с СД 2-го типа, регулярно проводящие самоконтроль глюкозы, имеют лучший контроль гликемии за счет активного участия в лечении и коррекции образа жизни, а также имеют возможность своевременной коррекции терапии лечащим врачом по мере необходимости. Исследования с использованием структурированного самоконтроля глюкозы чаще демонстрируют значительно большее улучшение гликемического контроля по сравнению с неструктурированным. Современные глюкометры имеют такие преимущества, как высокая точность показаний, интеграция с мобильным приложением, которое совмещает в себе функцию дневника самоконтроля, возможность анализа результатов в момент исследования, а также формирования отчетов для интерпретации лечащим врачом. Все это позволяет использовать самоконтроль глюкозы как удобный инструмент лечения СД 2-го типа.

Полный текст

Доступ закрыт

Об авторах

Татьяна Юльевна Демидова

ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России

Автор, ответственный за переписку.
Email: t.y.demidova@gmail.com

д.м.н., профессор, зав. кафедрой эндокринологии лечебного факультета

Россия, Москва

Виктория Викторовна Титова

ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России

Email: meteora-vica@mail.ru
ORCID iD: 0000-0002-8684-6095
SPIN-код: 7864-2910

ассистент кафедры эндокринологии лечебного факультета

Россия, Москва

Список литературы

  1. Goldstein D.E., Little R.R., Lorenz R.A. et al. Tests of glycemia in diabetes. Diabetes Care. 2004; 27(7): 1761–73. https://dx.doi.org/10.2337/diacare.27.7.1761.
  2. Franciosi M., Pellegrini F., De Berardis G. et al. Self-monitoring of blood glucose in non-insulin-treated diabetic patients: A longitudinal evaluation of its impact on metabolic control. Diabet Med. 2005; 22(7): 900–6. https://dx.doi.org/10.1111/j.1464-5491.2005.01546.x.
  3. Machry R.V., Rados D.V., Gregorio G.R., Rodrigues T.C. Self-monitoring blood glucose improves glycemic control in type 2 diabetes without intensive treatment: A systematic review and meta-analysis. Diabetes Res Clin Pract. 2018; 142: 173–87. https://dx.doi.org/10.1016/j.diabres.2018.05.037.
  4. Diabetes Control and Complications Trial Research Group, Nathan D.M., Genuth S., Lachin J. et al. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993; 329(14): 977–86. https://dx.doi.org/10.1056/NEJM199309303291401.
  5. Benedict S.R. A reagent for the detection of reducing sugars. 1908. J Biol Chem. 2002; 277(16): e5.
  6. Hagedorn H.C., Jensen, B.N. The microdetermination of blood sugar by means of ferricyanide. Biochem. Z. 1923; (135): 46.
  7. Tonyushkina K., Nichols J.H. Glucose meters: A review of technical challenges to obtaining accurate results J Diabetes Sci Technol. 2009; 3(4): 971–80. https://dx.doi.org/10.1177/193229680900300446.
  8. American Diabetes Association. Diabetes technology: Standards of medical care in diabetes – 2019. Diabetes Care. 2019; 42(Suppl 1): S71–80. https://dx.doi.org/10.2337/dc19-S007.
  9. Parkin C.G., Buskirk A., Hinnen D.A., Axel-Schweitzer M. Results that matter: Structured vs. unstructured self-monitoring of blood glucose in type 2 diabetes. Diabetes Res Clin Pract. 2012; 97(1): 6–15. https://dx.doi.org/10.1016/j.diabres.2012.03.002.S0168-8227(12)00098-8.
  10. Mannucci E., Antenore A., Giorgino F., Scavini M. Effects of structured versus unstructured self-monitoring of blood glucose on glucose control in patients with non-insulin-treated type 2 diabetes: A meta-analysis of randomized controlled trials. J Diabetes Sci Technol. 2018; 12(1): 183–89. https://dx.doi.org/10.1177/1932296817719290.
  11. Xu Y., Tan D., Lee J. Evaluating the impact of self-monitoring of blood glucose frequencies on glucose control in patients with type 2 diabetes who do not use insulin: A systematic r–eview and meta-analysis. Int J Clin Pract. 2019; 73(7): e13357. https://dx.doi.org/10.1111/ijcp.13357.
  12. Viana L.V., Leitao C.B., Kramer C.K. et al. Poor glycaemic control in Brazilian patients with type 2 diabetes attending the public healthcare system: A cross-sectional study. BMJ Open. 2013; 3(9): e003336. https://dx.doi.org/10.1136/bmjopen-2013-003336.
  13. Rosenstock J., Davies M., Home P.D. et al. A randomised, 52-week, treat-to-target trial comparing insulin detemir with insulin glargine when administered as add-on to glucose-lowering drugs in insulin-naive people with type 2 diabetes. Diabetologia. 2008; 51(3): 408–16. https://dx.doi.org/10.1007/s00125-007-0911-x.
  14. Garber A.J. Treat-to-target trials: Uses, interpretation and review of concepts. Diabetes Obes Metab. 2014; 16(3): 193–205. https://dx.doi.org/10.1111/dom.12129.
  15. Lu J., Bu R.F., Sun Z.L. et al. Comparable efficacy of self-monitoring of quantitative urine glucose with self-monitoring of blood glucose on glycemic control in noninsulin-treated type 2 diabetes. Diabetes Res Clin Pract. 2011; 93(2): 179–86. https://dx.doi.org/10.1016/j.diabres.2011.04.012.
  16. Bonomo K., De Salve A., Fiora E. et al. Evaluation of a simple policy for pre- and post-prandial blood glucose self-monitoring in people with type 2 diabetes not on insulin. Diabetes Res Clin Pract. 2010; 87(2): 246–51. https://dx.doi.org/10.1016/j.diabres.2009.10.021.
  17. Schnell O., Amann-Zalan I., Jelsovsky Z. et al. Changes in A1C levels are significantly associated with changes in levels of the cardiovascular risk biomarker hs-CRP. Results from the SteP study. Diabetes Care. 2013; 36(7): 2084–89. https://dx.doi.org/10.2337/dc12-1711.
  18. Chidum E., Agbai D., Fidelis O. et al. Self-monitoring of blood glucose improved glycemic control and 10-year coronary heart disease risk profile of type 2 diabetic patients. Chin Med J (Engl). 2011; 124(2): 166–71.
  19. Schwedes U., Siebolds M., Mertes G. Meal-related structured self-monitoring of blood glucose: effect on diabetes control in non-insulin-treated type 2 diabetic patients. Diabetes Care. 2002; 25(11): 1928–32. https://dx.doi.org/10.2337/diacare.25.11.1928.
  20. Bosi E., Scavini M., Ceriello A. et al. Intensive structured self-monitoring of blood glucose and glycemic control in noninsulin-treated type 2 diabetes: The Prisma randomized trial. Diabetes Care. 2013; 36(12): e218. https://dx.doi.org/10.2337/dc13-1683.
  21. Khamseh M.E., Ansari M., Malek M. et al. Effects of a structured self-monitoring of blood glucose method on patient self-management behavior and metabolic outcomes in type 2 diabetes mellitus. J Diabetes Sci Technol. 2011; 5(2): 388–93. https://dx.doi.org/10.1177/193229681100500228.
  22. Li C.L., Wu Y.C., Kornelius E. et al. Comparison of different models of structured self-monitoring of blood glucose in type 2 diabetes. Diabetes Technol Ther. 2016; 18(3): 171–77. https://dx.doi.org/10.1089/dia.2015.0082.
  23. Nishimura A., Harashima S.I., Fujita Y. et al. Effects of structured testing versus routine testing of blood glucose in diabetes selfmanagement: A randomized controlled trial. J Diabet Complicat. 2017; 31(1): 228–33. https://dx.doi.org/10.1016/j.jdiacomp.2016.08.019.
  24. Polonsky W.H., Fisher L., Schikman C.H. et al. Structured self-monitoring of blood glucose significantly reduces A1C levels in poorly controlled, noninsulin-treated type 2 diabetes: results from the Structured Testing Program study. Diabetes Care. 2011; 34(2): 262–67. https://dx.doi.org/10.2337/dc10-1732.
  25. Parsons S.N., Luzio S.D., Harvey J.N. et al. Effect of structured self-monitoring of blood glucose, with and without additional TeleCare support, on overall glycaemic control in non-insulin treated Type 2 diabetes: the SMBG Study, a 12-month randomized controlled trial. Diabet Med. 2019; 36(5): 578–90. https://dx.doi.org/10.1111/dme.13899.
  26. Yoo H.J., An H.G., Park S.Y. et al. Use of a real time continuous glucose monitoring system as a motivational device for poorly controlled type 2 diabetes. Diabetes Res Clin Pract. 2008; 82(1): 73–79. https://dx.doi.org/10.1016/j.diabres.2008.06.015.
  27. Farmer A.J., Perera R., Ward A. et al. Meta-analysis of individual patient data in randomised trials of self monitoring of blood glucose in people with non-insulin treated type 2 diabetes. BMJ. 2012; 344: e486. https://dx.doi.org/10.1136/bmj.e486.
  28. O’Kane M.J., Bunting B., Copeland M., Coates V.E.; ESMON study group. Efficacy of self monitoring of blood glucose in patients with newly diagnosed type 2 diabetes (ESMON study): Randomised controlled trial. BMJ. 2008; 336(7654): 1174–77. https://dx.doi.org/10.1136/bmj.39534.571644.BE.
  29. Jung H.S. Clinical implications of glucose variability: Chronic complications of diabetes. Endocrinol Metab (Seoul). 2015; 30(2): 167–74. https://dx.doi.org/10.3803/EnM.2015.30.2.167.
  30. Mazze R.S. Making sense of glucose monitoring technologies: From SMBG to CGM. Diabetes Technol Ther. 2005; 7(5): 784–87. https://dx.doi.org/10.1089/dia.2005.7.784.
  31. Kilpatrick E.S., Rigby A.S., Goode K., Atkin S.L. Relating mean blood glucose and glucose variability to the risk of multiple episodes of hypoglycaemia in type 1 diabetes. Diabetologia. 2007; 50(12): 2553–61. https://dx.doi.org/10.1007/s00125-007-0820-z.
  32. Gorst C., Kwok C.S., Aslam S. et al. Long-term glycemic variability and risk of adverse outcomes: A systematic review and meta-analysis. Diabetes Care. 2015; 38(12): 2354–69. https://dx.doi.org/10.2337/dc15-1188
  33. Nusca A., Tuccinardi D., Albano M. et al. Glycemic variability in the development of cardiovascular complications in diabetes. Diabetes Metab Res Rev. 2018; 34(8): e3047. https://dx.doi.org/10.1002/dmrr.3047.
  34. Meynaar I.A., Eslami S., Abu-Hanna A. et al. Blood glucose amplitude variability as predictor for mortality in surgical and medical intensive care unit patients: a multicenter cohort study. J Crit Care. 2012; 27(2): 119–24. https://dx.doi.org/10.1016/j.jcrc.2011.11.004.
  35. Madeo B., Diazzi C., Granata A.R.M. et al. Effect of a standard schema of self-monitoring blood glucose in patients with poorly controlled, non-insulin-treated type 2 diabetes mellitus: A controlled longitudinal study. J Popul Ther Clin Pharmacol. 2020; 27(S Pt 2): e1–e11. https://dx.doi.org/10.15586/jptcp.v27iSP2.680.
  36. Sia H.K., Kor C.T., Tu S.T. et al. Self-monitoring of blood glucose in association with glycemic control in newly diagnosed non-insulin-treated diabetes patients: A retrospective cohort study. Sci Rep. 2021; 11(1): 1176. https://dx.doi.org/10.1038/s41598-021-81024-x.
  37. IDF Clinical Practice Recommendations for managing Type 2 Diabetes in Primary Care. 2017. URL: https://idf.org/media/uploads/2023/05/attachments-63.pdf (date of access – 01.06.2023).
  38. Chang Y.T., Tu Y.Z., Chiou H.Y. Et al. Real-world benefits of diabetes management app use and self-monitoring of blood glucose on glycemic control: Retrospective analyses. JMIR Mhealth Uhealth. 2022; 10(6): e31764. https://dx.doi.org/10.2196/31764.
  39. Алгоритмы специализированной медицинской помощи больным сахарным диабетом. Под редакцией И.И. Дедова, М.В. Шестаковой, А.Ю. Майорова. 11-й выпуск. М. 2023. [Algorithms of specialized medical care for patients with diabetes mellitus. Ed. by Dedov I.I., Shestakova M.V., Mayorov A.Yu. 11th edition. Moscow. 2023 (In Russ.)]. https://dx.doi.org/10.14341/DM13042.
  40. Grady M., Lamps G., Shemain A. et al. Clinical evaluation of a new, lower pain, one touch lancing device for people with diabetes: Virtually pain-free testing and improved comfort compared to current lancing systems. J Diabetes Sci Technol. 2021; 15(1): 53–59. https://dx.doi.org/10.1177/1932296819856665.
  41. Harrison B., Brown D. Accuracy of a blood glucose monitoring system that recognizes insufficient sample blood volume and allows application of more blood to the same test strip. Expert Rev Med Devices. 2020; 17(1): 75–82. https://dx.doi.org/10.1080/17434440.2020.1704253.
  42. Katz L.B., Stewart L., Guthrie B., Cameron H. Patient satisfaction with a new, high accuracy blood glucose meter that provides personalized guidance, insight, and encouragement. J Diabetes Sci Technol. 2020; 14(2): 318–23. https://dx.doi.org/10.1177/1932296819867396.
  43. Shaw R.J., Yang Q., Barnes A. et al. Self-monitoring diabetes with multiple mobile health devices. J Am Med Inform Assoc. 2020; 27(5): 667–76. https://dx.doi.org/10.1093/jamia/ocaa007.
  44. Bailey T.S., Wallace J.F., Pardo S. et al. Accuracy and user performance evaluation of a new, wireless-enabled blood glucose monitoring system that links to a smart mobile device. J Diabetes Sci Technol. 2017; 11(4): 736–43. https://dx.doi.org/10.1177/1932296816680829.
  45. Otto E.A., Tannan V. Evaluation of the utility of a glycemic pattern identification system. J Diabetes Sci Technol. 2014; 8(4): 830–38. https://dx.doi.org/10.1177/1932296814532210.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© ООО «Бионика Медиа», 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах