DOI: https://doi.org/10.52899/24141437_2025_04_XX

EDN: AAUWFW

УДК 667.6:001.895

Инновационные лакокрасочные системы в судостроении

Е.И. Карзина, М.А Гайдым

Санкт-Петербургский государственный морской технический университет, Санкт-Петербург, Россия

RNJATOHHA

Актуальность. В современных условиях развития судостроительной отрасли проблема защиты корпусов судов от коррозионных разрушений приобретает особую актуальность. Существующие методы защиты не обеспечивают что. приводит предотвращения коррозионных процессов, К значительным экономическим потерям и снижению эксплуатационных характеристик судов. Нанонаполнители в составе лакокрасочных материалов демонстрируют перспективные возможности для решения данной проблемы. Благодаря использованию этих технологий удаётся формировать покрытия с превосходящими стандартными показателями качествами. Нанонаполнители могут увеличивает прочность, улучшают гидрофобность и др. Научная значимость работы заключается в влияния нанонаполнителей изучении на защитные лакокрасочных материалов и разработке рекомендаций по их рациональному использованию в судостроении.

Исследование актуально поскольку в настоящее время ограниченно количество опубликованных работ по влиянию нанонаполнителей на коррозионную стойкость.

Цель работы — определение влияния различных типов наполнителей на защитные свойства лакокрасочного покрытия и его способность противостоять коррозионным процессам.

Материалы и методы. В процессе научного исследования применялись наноразмерные наполнители из мела и талька, а также методика поляризационных кривых для определения устойчивости покрытия к коррозии.

Результаты. Проведённое сравнение защитных характеристик показало, что меловая эмаль обеспечивает более эффективную антикоррозионную защиту, чем тальковая. Результаты исследования могут быть использованы при разработке новых составов лакокрасочных материалов и совершенствовании технологий защиты судовых конструкций от коррозии.

Заключение. На основе полученных данных сформирован следующий порядок по эффективности защиты стальных конструкций от коррозии: судовая эмаль $\Pi\Phi$ -167 < покрытие с тальком < покрытие с нанотальком < покрытие с мелом \approx покрытие с наномелом.

Ключевые слова: антикоррозионная защита; защитные покрытия; наноструктуры;

лакокрасочные материалы (ЛКМ); минеральные наполнители; карбонаты; силикаты.

КАК ПИТИРОВАТЬ:

Карзина Е.И., Гайдым М.А. Инновационные лакокрасочные системы в Accepted For Publicative судостроении // Труды Санкт-Петербургского государственного морского XX-XX. DOI: технического 10.52899/24141437 2025 04 XX EDN: AAUWFW

Innovative paint systems in shipbuilding

E.I. Karzina, M.A. Zhdanova

Saint-Petersburg State Marine Technical University, Saint-Petersburg, Russia

ABSTRACT

RELEVANCE. In the modern context of the shipbuilding industry, the problem of protecting ship hulls from corrosion is particularly pressing. Existing protection methods do not completely prevent corrosion, leading to significant economic losses and reduced vessel performance. Nanofillers in paints and varnishes (PVCs) offer promising potential for solving this problem. These technologies make it possible to create coatings with superior performance. Nanofillers can increase adhesion strength, improve hydrophobicity, and more. The scientific significance of this study lies in its comprehensive study of the influence of nanofillers on the protective properties of paints and varnishes and the development of recommendations for their rational use in shipbuilding.

This study is relevant because there is currently a limited number of published studies on the effect of nanofillers on corrosion resistance.

The aim of this study is to determine how different types of fillers affect the protective properties of paint coatings and their ability to resist corrosion.

MATERIALS AND METHODS: The research utilized nanoscale fillers of chalk and talc, as well as a polarization curve method to determine the coating's corrosion resistance.

RESULTS: A comparison of protective characteristics showed that chalk enamel provides more effective anti-corrosion protection than talc enamel. The results of the study can be used to develop new paint and varnish compositions and improve corrosion protection technologies for ship structures.

CONCLUSION: Based on the data obtained, the following order of effectiveness for protecting steel structures from corrosion was established: PF-167 marine enamel < talc coating < nanotalc coating < chalk coating ≈ nanochalk coating.

Keywords: anti-corrosion protection; protective coatings; nanostructures; paints and varnishes (PVC); mineral fillers; carbonates; silicates.

TO CITE THIS ARTICLE:

Karzina EI, Zhdanova MA. Innovative paint systems in shipbuilding. *Transactions of the Saint Petersburg State Marine Technical University*. 2025;4(4):X-XX. DOI: 10.52899/24141437_2025_04_XX EDN: FTWLPY

Submitted: 05.10.2025

Accepted: 13.10.2025

Published online: 03.11.2025

Accepted for publication

ВВЕДЕНИЕ

Коррозия представляет собой серьёзную проблему для любого судна, и её последствия могут быть крайне разрушительными. Коррозия металла не щадит все элементы судна. Обшивка корпуса судна постоянно контактирует с морской водой. Сначала на поверхности появляются едва заметные точки ржавчины. Постепенно эти точки разрастаются, превращаясь в глубокие рытвины. В особо тяжёлых случаях коррозия может проесть металл насквозь, образуя дыры. Это не только ухудшает внешний вид судна, но и серьёзно снижает его мореходные качества. Трубопроводная система страдает не меньше. Внутри труб появляются наросты ржавчины, которые сужают проходное сечение. Это приводит к забиванию трубопроводов, снижению эффективности работы насосов, а также возможному разрыву труб под давлением. В результате чего возможны аварии и утечки различных жидкостей. Особенно опасны коррозионные повреждения для грузовых танков и топливных систем, где утечка может привести к серьёзным экологическим последствиям. Разрушительные процессы затрагивают как сварные швы, так и всю металлическую конструкцию. В местах сварки металл более уязвим, и именно там часто начинается коррозия. Постепенно это приводит ослаблению креплений и появлению трещин. Экономические последствия коррозии поистине впечатляют. Сюда входят как прямые потери от коррозии (окисление металла), так и косвенные. В итоге, годовой бюджет на борьбу с коррозией для среднего торгового судна может достигать нескольких миллионов долларов, не считая непредвиденные расходы и потери дохода из-за простоя. А самое главное - коррозия напрямую влияет на безопасность судна. Ослабленные конструкции могут не выдержать нагрузки, что грозит возникновением чрезвычайных ситуаций. В особо запущенных случаях коррозия может сделать судно непригодным для дальнейшей эксплуатации, что означает не только потерю самого судна, но и огромные финансовые потери для владельна [1].

В современной судостроительной отрасли стремительно внедряются передовые технологии защиты металлоконструкций от коррозионных процессов. Антикоррозионные системы нового поколения базируются на использовании наноструктурированных материалов и композитных покрытий. Ключевой момент в работе с этими материалами — понимание того, как именно они будут вести себя в составе защитного покрытия. Особое внимание уделяется микроскопическому анализу материалов, позволяющие провести количественную оценку размеров, качественных особенностей формы и агрегационной способности частиц.

ТИПЫ НАНОНАПОЛНИТЕЛЕЙ ДЛЯ ИССЛЕДОВАНИЯ КОРРОЗИОННОЙ СТОЙКОСТИ

Для научного эксперимента было изучено влияние различных типов нанонаполнителей на устойчивость лакокрасочных покрытий к коррозионным процессам. Объектом исследования выступила судовая эмаль марки ПФ-167, модифицированная следующими типами наполнителей:

- традиционный мел;
- природный тальк;
- наноразмерный тальк;

- наноразмерный мел.

В процессе исследования проводилось сравнительное изучение эффективности каждого типа наполнителя для оценки их потенциала в повышении антикоррозионных характеристик лакокрасочного материала.

Минеральные наполнители являются фундаментальным компонентом, определяющим антикоррозионные характеристики современных лакокрасочных композиций. В рамках настоящего исследования особое внимание уделяется наноразмерным карбонатным наполнителям как перспективным модификаторам защитных покрытий.

Карбонатные наполнители, представленные такими соединениями как кальцит (мел) и доломит, демонстрируют выраженную химическую активность в отношении карбоксилсодержащих пленкообразующих веществ, в частности алкидных смол.

Тальковые наполнители (магниевый силикат) характеризуются высокой химической инертностью, минимальной пористостью структуры. Такие наполнители эффективно ингибирует диффузионные процессы и усиливает барьерные функций покрытия.

Комплексное применение указанных наполнителей обеспечивает синергетический эффект в формировании защитных покрытий с улучшенными эксплуатационными характеристиками.

Исследования элементного состава природного мела были получены следующие результаты: основной компонент материала представлен оксидом кальция (CaO) с массовой долей 95% от общей массы образца. Второстепенный компонент — оксид магния (MgO) — выявлен в количестве 5%.

Морфологическое исследование выявило высокую степень дисперсности частиц, в которой преобладает кристаллическая модификация кальцита. Имеет однородную структуру материала.

При исследовании элементного состава талька выявлена структурная организация материала, характеризующаяся выраженной крупнодисперсностью. Морфологическая характеристика представлена иголчатыми и волокнистыми агрегатами и чешуйчатыми образованиями. Результаты элементного анализа талькового сырья продемонстрировали превалирующее содержание кремнезёма (SiO2) и магниевой окиси (MgO). Содержание окиси алюминия Al2O3 и трехвалентного оксида железа (Fe2O3) находится на минимальном уровне.

ПРОВЕДЕНИЕ ЭКСПЕРИМЕНТАЛЬНОГО ИССЛЕДОВАНИЯ

В качестве базового материала исследования была выбрана углеродистая сталь марки Cr3. На исследуемые образцы наносились стандартная судовая эмаль ПФ-167 и модифицированный лакокрасочный состав с добавлением наноразмерных частиц мела и талька.

Перед нанесением покрытий проводился подготовительный этап обработки стальных образцов. Механическая обработка поверхности абразивным материалом, удаление жировых загрязнений и нанесение грунтовочного слоя.

Технологический процесс нанесения покрытий осуществлялся с соблюдением межслойной выдержки в течении 48 часов. Температурный режим сушки -20–20 °C.

Для проведения экспериментального исследования были подготовлены следующие образцы материалов (контрольная группа – образец стали, покрытый базовой эмалью без дополнительных модификаторов):

- Экспериментальная группа №1 образец с покрытием на основе традиционного талькового наполнителя.
- Экспериментальная группа №2 образец, модифицированный наноразмерными частицами талька.
- Экспериментальная группа №3 образец с покрытием, содержащим классический меловой наполнитель.
- Экспериментальная группа №4 образец, модифицированный наноразмерными частицами мела.

Каждый образец представляет собой отдельную экспериментальную модель для изучения влияния различных типов наполнителей на характеристики покрытия. Экспериментальное исследование осуществлялось посредством потенциодинамической поляризации. Для была задействована этого специализированная трёхэлектродная электрохимическая система, интегрированная с измерительным прибором — потенциостатом модели Р8S. Основной элемент измерительной ячейки состоит из стеклянного полого цилиндра с диаметром 3 сантиметра. Где размещается исследуемый образец – стальной образец с нанесённым покрытием. Электролитная среда была представлена 3-процентным водным раствором хлорида натрия (NaCl), обеспечивающим необходимые условия для проведения электрохимических измерений.

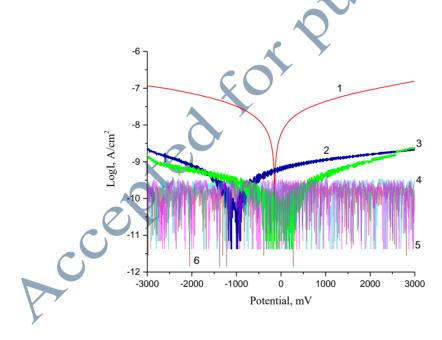


Рис. 1. Метод потенциодинамической поляризации. 1 – контроль, 2 – Экспериментальная группа № 1 (ЭГ), 3 – ЭГ № 2, 4 – ЭГ № 3, 5 – ЭГ № 4.

Fig. 1. The method of potentiodynamic polarization. 1 – control, 2 – Experimental group No. 1 (EG), 3 – EG No. 2, 4 – EG No. 3, 5 – EG No. 4.

Для снятия показаний на всех образцах скорость сканирования потенциала составляла 10 мB в секунду. Диапазон измерения охватывал интервал от -0.9 до +0.3 B. Методика испытаний предполагала перманентное погружение тестируемых образцов в раствор хлорида натрия (3%). [5].

ЗАКЛЮЧЕНИЕ

Проведённый анализ экспериментальных данных, полученных при исследовании поляризационных кривых, убедительно свидетельствует о том, что лакокрасочные материалы, содержащие в своём составе, мел и его наноразмерные компоненты, обеспечивают высокий уровень защиты от коррозионных процессов.

Интерпретация экспериментальных данных (см. рис. 1) позволяет сделать выводы относительно коррозионной активности исследуемых образцов. Базовая эмаль (немодифицированное покрытие) демонстрирует максимально высокие показатели коррозионного тока среди всех тестируемых образцов. Тальковые модификации (как традиционная, так и наноразмерная форма) характеризуются сниженным уровнем коррозионного тока, однако недостаточным защитным эффектом. Меловые композиции (включая наноразмерные модификации) демонстрируют существенное подавление коррозионных процессов и значительное снижение показателей тока коррозии. Экспериментальные группы №3–4 достигают полного уровня защиты, который не фиксируется измерительной аппаратурой.

Исходя из полученных результатов выстраивается ранжированный ряд эффективности антикоррозионной защиты стальных конструкций: контроль < тальк < наноразмерный тальк < мел \approx наноразмерный мел.

В ходе детального анализа образцов лакокрасочного материала ПФ-167, созданных на базе наполнителей из мела и талька, обнаружены включения оксида железа (FeO) зафиксированы в структуре обоих типов эмалевых композиций. Наличие примесей свидетельствует о протекании коррозионных процессов в обеих исследуемых системах. Но несмотря на это характер коррозии демонстрирует существенную разницу в скорости развития разрушений между образцами.

Меловое эмалевое покрытие существенно замедляет коррозионные процессы, при этом концентрация образующегося оксида железа остаётся крайне низкой — лишь 0.4%.

Процесс коррозии на стальной поверхности с тальковым эмалевым покрытием протекает значительно интенсивнее, что подтверждается существенно более высоким уровнем содержания оксида железа — 0,99%.

Сравнительный анализ защитных свойств показал превосходство меловой эмали над тальковой в плане антикоррозионной защиты.

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ

Вклад авторов. Е.И. Карзина – постановка проблемы, методология, написание раздела «Введение» и «Типы нанонаполнителей для исследования коррозионной стойкости», финальная редакция текста; М.А. Гайдым – сбор и обработка экспериментальных данных, визуализация результатов. Написание раздела «Заключение».

Источники финансирования. Авторы заявляют об отсутствии внешнего

финансирования при проведении исследования.

Конфликт интересов. Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.

Генеративный искусственный интеллект. При создании настоящей статьи технологии генеративного искусственного интеллекта не использовали.

ADDITIONAL INFO

Authors contributions. Author: E.I. Karzina – problem statement, methodology, writing of the "Introduction" and "Types of Nanofillers for Corrosion Resistance Studies" sections, final text revision.

Author: M.A. Gaidym – experimental data collection and processing, results visualization. Writing of the "Conclusion" section.

Funding sources. The authors declare no external funding was received for conducting the study.

Disclosure of interests. The authors have no explicit or potential conflicts of interest associated with the publication of this article.

Generative artificial intelligence. The authors did not use any generative AI technologies in the preparation of this manuscript.

СПИСОК ЛИТЕРАТУРЫ

- 1. Кузнецов С.В. Нанотехнологии в судостроении: сборник статей. М.: КолосС, 2021.
- 2. Михайлов В.Н. Технология защиты судов от коррозии: практическое руководство. СПб.: Лань, 2020.
- 3. Морозов И.И. Антикоррозионная защита судов. СПб.: Судостроение, 2020.
- 4. Кузьмин В.Д. Нанотехнологии в лакокрасочной промышленности: инновации и перспективы. М.: Техносфера, 2020.
- 5. Иванов И.С. Лакокрасочные материалы с наночастицами: свойства и применение. М.: Издательство МЭИ, 2019.

REFERENCES

- 1) Kuznetsov SV. Nanotechnology in Shipbuilding: Collection of Articles. Moscow: KolosS; 2021. (In Russ.)
- 2. Mikhailov VN. *Technology of Ship Corrosion Protection: A Practical Guide*. St. Petersburg: Lan; 2020. (In Russ.)
- 3. Morozov II. *Anticorrosion Protection of Ships*. St. Petersburg: Sudostroenie; 2020. (In Russ.)
- 4. Kuzmin VD. *Nanotechnology in the Paint and Coatings Industry: Innovations and Prospects*. Moscow: Tekhnosfera; 2020. (In Russ.)

5. Ivanov IS. Nanoparticle-based Paint and Coatings Materials: Properties and Applications. Moscow: MEI; 2019. (In Russ.)

ОБ АВТОРАХ

Ekaterina I. Карзина Екатерина Ивановна*, канд. Karzina*. Cand. Sci. техн. наук, доцент; (Engineering), docent; Адрес: 190121, Санкт-Петербург, ул. Lotsmanskaya, 3, St. Petersburg, 190121, Лоцманская, д. 3; Russian Federation: e-mail: ekaterina.plaskeeva@list.ru; ekaterina.plaskeeva@list.ru; e-mail: SPIN-код: 7638-3213 SPIN-код: 7638-3213 Marina A. Gaidym; Гайдым Марина Андреевна; e-mail: marina.zhdanova.1998@mail.ru; e-mail: marina.zhdanova.1998@mail.ru; SPIN-код: 5395-5509 SPIN-код: 5395-5509