MODELING OF EFFECTIVE ELASTIC CHARACTERISTICS AND ANISOTROPY PARAMETERS OF ANTIFRICTION POLYMERIC COMPOSITES REINFORCED BY ORIENTED FIBERS

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

Multicomponent tribocomposites based on epoxy binder ED-20 reinforced with fibers of E-glass and polytetrafluoroethylene are considered. It is assumed that glass fibers are oriented along the x and y axes of the rectangular coordinate system, while polytetrafluoroethylene fibers are oriented only in the direction of the x axis. This corresponds to the reinforcement of the material with glass fabric, in which polytetrafluoroethylene fibers are woven. A model has been constructed that makes it possible to perform numerical calculations of the values of effective elastic characteristics (components of the tensor of effective elastic moduli) and elastic anisotropy parameters of the specified antifriction composites. The model is based on the generalized singular approximation of the random field’s theory, which is used in solving the stochastic differential equation for the equilibrium of an elastic medium. Numerical calculations of the effective elastic characteristics and elastic anisotropy parameters in the directions of the x, y, and z axes of the rectangular coordinate system of antifriction polymer composites are carried out, taking into account changes in the volume concentrations of their components. When calculating the values of effective elastic characteristics of model tribocomposites, the self-consistency method was used. Studies have shown that an increase in the content of polytetrafluoroethylene fibers leads to a decrease in the values of effective moduli of elasticity and an increase in anisotropy (especially in the direction of the x and y axes of a rectangular coordinate system) of model antifriction composites. It has been established that at fixed concentrations of the epoxy binder and polytetrafluoroethylene fibers, the redistribution (in the directions of the x and y axes) of the volume fraction of E-glass fibers for some components of the tensor of effective elastic moduli leads to an increase in their values, and for others, on the contrary, to a decrease. In this case, the anisotropy increases in the direction of the x axis and weakens in the direction of the y axis, while the values of the anisotropy parameter in the direction of the z axis change insignificantly.

Sobre autores

V. Kolesnikov

Rostov State Transport University

Rostov-on-Don, Russian Federation

V. Bardushkin

National Research University of Electronic Technology

Moscow, Zelenograd, Russian Federation

A. Sychev

Federal Research Centre the Southern Scientific Centre of the Russian Academy of Sciences

Email: alekc_sap@mail.ru
Rostov-on-Don, Russian Federation

Bibliografia

  1. Чичинадзе А.В., Матвеевский Р.М., Браун Э.Д. 1986. Материалы в триботехнике и в нестационарных процессах. М., Наука: 240 с.
  2. Машков Ю.К., Овчар З.Н., Байбарацкая М.Ю., Мамаев О.А. 2004. Полимерные композиционные материалы в триботехнике. М., Недра: 262 с.
  3. Колесников В.И., Бардушкин В.В., Яковлев В.Б., Сычев А.П., Колесников И.В. 2012. Микромеханика поликристаллов и композитов (напряженно-деформированное состояние и разрушение). Ростов н/Д, изд-во РГУПС: 288 с.
  4. Колесников И.В. 2012. Упругие характеристики трехкомпонентных антифрикционных композитов с ориентированными неизометричными включениями. Известия Петербургского университета путей сообщения. 32(3): 150–157.
  5. Бардушкин В.В., Колесников И.В., Флек Б.М., Сычев А.П., Яковлев В.Б. 2012. Упругие характеристики антифрикционных тканых композитов для тяжелонагруженных узлов трения. Трение и смазка в машинах и механизмах. 12: 13–18.
  6. Колесников В.И., Бардушкин В.В., Сычев А.П. 2017. Эксплуатационные упругие свойства хаотически армированных трибокомпозитов. Мир транспорта. 15(2): 38–46.
  7. Шермергор Т.Д. 1977. Теория упругости микронеоднородных сред. М., Наука: 399 с.
  8. Физические величины: справочник. 1991. М., Энергоатомиздат: 1232 с.
  9. Гутников С.И., Лазоряк Б.И., Селезнев А.Н. 2010. Стеклянные волокна. М., изд-во МГУ: 53 с.
  10. Лапицкий В.А., Крицук А.А. 1986. Физико-механические свойства эпоксидных полимеров и стеклопластиков. Киев, Наукова думка: 92 с.
  11. Паньков А.А. 2008. Методы самосогласования механики композитов. Пермь, изд-во Пермского государственного технического университета: 253 с.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Издательство «Наука», 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies