УДК 631.4

DOI: 10.31857/S2500262724010085, EDN: CSLSPX

ВЛИЯНИЕ ИНТЕНСИВНОСТИ ВЫПАСА НА ДЕПОНИРОВАНИЕ ОРГАНИЧЕСКОГО УГЛЕРОДА В ПОЧВЕ ПАСТБИЩА

Л. В. Бойцова, С. В. Непримерова

Агрофизический научно-исследовательский институт, 195220, Санкт-Петербург, Гражданский просп., 14 E-mail: larisa30.05@mail.ru

Исследование проводили с целью изучения влияния интенсивности выпаса крупного рогатого скота на депонирование органического углерода (C_{op}) в почве пастбища. Работу выполняли в 2010 г. на дерново-среднеподзолистой супесчаной почве в Ленинградской области. Для постановки опыта было выделено три участка пастбища, различающихся по степени интенсивности выпаса: слабая (участок 1), средняя (участок 2), сильная (участок 3). C_{op} и углерод илистой фракции почвы (C_{uv}) определяли по методу И. В. Тюрина. Фракцию ила (<1 мкм) выделяли с использованием седиментации и центрифугирования. Рентгенографический анализ почвенных минералов проводили в пробах илистой фракции почвы на дифрактометре ДРОН-3М: трубка Си Ка, режим 30 мА, 30 кV, от 3,5 до 75°, скорость вращения гониометра 1° в минуту. Почва участка 3 характеризовалась минимальным содержанием C_{op} в оба срока обследования (май – 16 С г/кг; июль – 27,8 С г/кг). Величина C_{op} в июльских пробах была меньше, чем на участке 2, в 1,3 раза, по сравнению с участком 1,— в 1,2 раза. Содержание C_{uv} в мае варьировало в диапазоне 40,8...108,9 С г/кг, в июле – 99,7...140,9 С г/кг. В июльских пробах с участка 3 оно превышало величину этого показателя зафиксирована для почвы участка 3 в июле, где она была выше, чем на участках 1 и 2, в 1,75 раза. Минералом, депонирующим органическое вещество в илистой фракции почвы участка с сильной интенсивностью выпаса, выступала слюда с дефицитом катионов (r = 0,90). Увеличение интенсивности выпаса приводило к росту содержания C_{uv} .

INFLUENCE OF GRAZING INTENSITY ON ORGANIC CARBON DEPOSITION IN PASTURE SOIL

L. V. Boitsova, S. V. Neprimerova

Agrophysical Research Institute, 195220, Sankt-Peterburg, Grazhdanskiy prosp., 14 E-mail: larisa30.05@mail.ru

The study was conducted to study the effect of cattle grazing intensity on the deposition of organic carbon (C_{org}) in pasture soil. The work was carried out in 2010 on soddy-medium podzolic sandy loam soil in the Leningrad region. Three pasture areas were identified according to grazing intensity: weak (section 1), medium (section 2), strong (section 3). C_{org} and carbon in the clay fraction of the soil (C_{clay}) were determined according to the method of I. V. Tyurin. The sludge fraction (<1 μ m) was isolated using sedimentation and centrifugation. X-ray analysis of soil minerals was carried out in samples of the clay fraction of the soil on a DRON-3M diffractometer, Cu Ka tube mode 30 mA, 30 kV, from 3.5 to 75°, goniometer rotation speed 1° per minute. The soil of site 3 was distinguished by the minimum content of C_{org} in both periods of the survey (May – 16 C g/kg of soil; July – 27.8 C g/kg). The C_{org} value in the July samples was 1.3 times less compared to site 2 and 1.2 times less than site 1. C_{clay} values varied in the range: in May 40.8...108.9 C g/kg fractions, in July 99.7...140.9 C g/kg fraction. The content of C_{clay} in July samples from site 3 was 1.3 times higher than the content in samples from site 2 and 1.4 times from site 1. The variation in the enrichment coefficient (E_{soc}) was 1.78...3.50 in May, 2 in July .89...5.07. The highest Esoc was recorded for the soil of site 3 in July; its values exceeded the values in sites 1 and 2 by 1.75 times. The mineral depositing organic matter in the clay fraction of the soil of the site with high grazing intensity was mica with a deficiency of cations (r = 0.90). The increase in grazing intensity led to an increase in the content of C_{clay} .

Ключевые слова: пастбище, интенсивность выпаса, депонирование углерода, почвенные минералы.

Почвы пастбищ аккумулируют в себе 343 Гт С, что почти на 50% больше, чем в лесах по всему миру [1]. Выпас скота существенно уменьшает количество органического углерода в почве, что связано со снижением растительной биомассы, а также усилением почвенного дыхания [2]. В то же время существуют работы, демонстрирующие положительной влияние выпаса на накопление органического углерода, по сравнению с нативной почвой [3, 4]. Lu X. К. с соавторами [5] обнаружили, что на накопление углерода в почве при различной интенсивности выпаса влияет среднесуточная и среднегодовая температуры почвы, глубина ее слоя, тип домашнего скота и климатические условия [6]. По итогам мета-анализа

Key words: pasture, grazing intensity, carbon sequestration, soil minerals.

результатов 83 исследований отмечено влияние климата на накопление углерода в почве при различной интенсивности выпаса. Высокий уровень выпаса значительно увеличивал содержание органического углерода для пастбищ с преобладанием растений С4, по сравнению с пастбищами с преобладанием С3 и смешанными лугами С3...С4 [7]. Результаты исследований Gebregerges T. с соавторами показали [8], что чрезмерный выпас на пастбищах вызывает изменение структуры растительности вследствие уменьшения её густоты и биомассы. Это приводит к снижению накопления углерода в почве [9].

Процессы, регулирующие удержание углерода, а также образование и разложение стабилизирован-

ного почвенного органического вещества, зависят от взаимодействия между составом поступившего углерода, структурой почвы и микробными сообществами. Защиту углерода от микробного разложения обеспечивают органоминеральные комплексы [10]. Такие взаимодействия были признаны ключевым фактором стабилизации органического вещества в почве [11, 12]. Эффективнее всего его защищают самые мелкие минералы, размеры которых не превышают 1 мкм (фракция ила). Среди них можно назвать глинистые минералы, различные формы оксигидроксидов металлов и слабокристаллические алюмосиликаты.

Цель исследования — установить влияние интенсивности выпаса крупного рогатого скота на накопление органического углерода в верхнем почвенном горизонте пастбища в связи с качественным составом минералов, воздействующих на депонирование углерода в дерново-среднеподзолистой супесчаной почве.

Методика. Почвенные образцы отбирали на пастбище ОПХ «Суйда» (Ленинградская обл., Гатчинский р-он, Россия) на участках с различной интенсивностью выпаса скота в 2010 г. Выделено три участка пастбища со слабой (1), средней (2) и сильной (3) интенсивностью выпаса, расположенных вдоль трансекты (линии) длиной 1500 м. Интенсивность выпаса определяли визуально по степени проективного покрытия почвы луговой растительностью [13]. На участках со слабой (1) и средней (2) интенсивностью преобладали ежа сборная (Dáctylis glomeráta), тимофеевка луговая (Phleum pratense), кострец безостный (Bromopsis inermis), с сильной (3) – клевер ползучий (Trifolium repens), лапчатка гусиная (Potentilla anserina), подорожник (Plantágo). На участках выпасали крупный рогатый скот – 200 коров. Начало выпаса – 30 мая, способ выпаса – пригонная система близ фермы.

Почва дерново-среднеподзолистая супесчаная. Объединённую пробу формировали из индивидуальных, которые отбирали методом конверта с площадок размером 2 м × 2 м из верхнего горизонта, на участке 1 из слоя 8...13 см под дерниной, на участках 2 и 3 – из слоя 2...7 см под дерниной, по стандартной методике с использованием почвенного бура [14]. На каждом участке было по 3 площадки отбора. Образцы отбирали до начала выпаса в мае и конце июля (через 2 месяца после начала выпаса).

Почва характеризовалась следующими агрохимическими показателями: участок $1-pH_{KCI}=5,9,$ $C_{0}=3,11\%$, $N_{0}=0,24\%$; участок $2-pH_{KCI}=6,1,$ $C_{0}=4,28\%$, $N_{0}=0,26\%$; участок $3-pH_{KCI}=6,1,$ $C_{0}=1,60\%$, $N_{0}=0,11\%$.

В период выпаса крупного рогатого скота (июньсентябрь) выпало 460 мм осадков, из них в июне – 220 мм, в июле – 90 мм. Средняя температура воздуха в июне составила 18,7 °C, в июле – 27,8 °C.

Содержание общего органического углерода ($C_{\rm opr}$) и углерода илистой фракции ($C_{\rm ил}$) определяли по методу Тюрина [15]. Илистую фракцию (<0,001 мм) почвы выделяли по методике, описанной в работе [16]. Качественный состав почвенных минералов илистой фракции определяли методом рентгенографического анализа. Съемку образцов осуществляли на рентгеновском дифрактометре ДРОН-ЗМ, трубка Си Ка, режим 30 мА, 30 кV, от 3,5 до 75°, скорость вращения гониометра 1 гр/мин. Накопление углерода в почве оценивали на основе коэффициента обогащения ($E_{\rm soc}$) [17]:

$$E_{\text{soc}} = C_{\text{ил}} / C_{\text{opr}}$$

где $C_{_{\rm ил}}-$ содержание углерода илистой фракции, % от массы фракции; $C_{_{\rm opr}}-$ содержание общего органического углерода, % от массы почвы.

Объемную плотность почвы определяли методом цилиндров [18].

Статистическая обработка результатов предусматривала расчет средних, стандартных отклонений и коэффициентов корреляции Пирсона. Достоверность различий между средними оценивали методом дисперсионного анализа (ANOVA) при уровне значимости p<0,05.

Результаты и обсуждение. В начале наблюдений в мае месяце максимальное содержание общего органического углерода отмечали в почве участка со средней интенсивностью выпаса – 42,8 С г/кг (рис. 1). В почве участка с сильной интенсивностью выпаса количество С орг было наименьшим (16,0 С г/кг). Вероятно, такая картина была обусловлена тем, что на протяжении нескольких предыдущих лет использования пастбища на участке с сильной интенсивностью выпаса в целом происходила большая минерализация органического вещества. Причина таких изменений может быть связана с сокращением видового разнообразия и снижением проективного покрытия участка с сильной интенсивностью выпаса, что привело к уменьшению биомассы растений и, как следствие, прихода свежего органического вещества в виде отмирающих приземных и подземных частей растений.

По окончании наблюдений в июле сохранялась аналогичная тенденция в накоплении C_{opr} в почве. Так, в почве участка 1 величина этого показателя составляла 33,9 С г/кг, участка 2 – 37,7 С г/кг, участка 3 – 27,8 С г/кг. Различия между содержанием C_{opr} в майских и июльских пробах почвы были недостоверны (p<0,72).

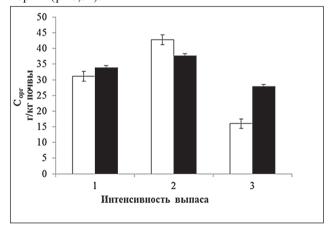


Рис. 1. Содержание общего органического углерода (С_{орг}) в дерново-среднеподзолистой супесчаной почве при разной интенсивности выпаса: — май, — июль.

При этом, относительно начала наблюдений, наибольшее накопление $C_{\rm opt}$ происходило в почве участка 3, оно возросло на 73%. Можно предположить, что поскольку этот участок характеризовался самым высоким приходом продуктов жизнедеятельности КРС, величина этого показателя повышалась вследствие роста содержания легкой фракции, что сопровождается повышением содержания общего органического углерода в почве [19, 20]. Увеличение $C_{\rm opt}$ в почве участка 1 на 35% и уменьшение в почве участка 2 на 26%, вероятно, связано с пестротой

почвенного участка и неконтролируемым выпасом животных.

В мае отмечали постепенное уменьшение количества С , в почве по мере увеличения интенсивности выпаса, в конце июля тенденция носила обратный характер (рис. 2). Диапазон его варьирования в мае составлял 40,8...108,9 С г/кг, в июле – 99,7...140,9 С г/кг. Различия между значениями $C_{\mu\nu}$ в мае и июле были недостоверными (p<0,15). При этом в почве участка 1 содержание С, уменьшилось в 1,1 раза, на участках 2 и 3 – возросло соответственно в 1,4 и 3,4 раза. Такое увеличение, особенно на участке с сильной интенсивностью выпаса, с одной стороны, связано с повышенным притоком продуктов жизнедеятельности крупного рогатого скота, с другой – с большей плотностью почвы на этом участке, по сравнению с другими. В начале наблюдений величина последней на участке 1 составляла 1,20 г/см³, $2 - 1,00 \text{ г/см}^3$, $3 - 1,10 \text{ г/см}^3$, в конце июля она повышалась соответственно до 1,55, 1,42 и 1,75 г/см³. По окончании наблюдений наибольшая плотность почвы на участке 3, по сравнению с участками 1 и 2, создала условия для снижения ее аэрации. При уплотнении в первую очередь разрушаются крупные поры, одновременно происходят существенные изменения в их распределении по размерам. В свою очередь, объемная плотность увеличивается, снижая объем макропор почвы [21], что уменьшает ее воздухопроницаемость. Larsbo M. с соавторами [22] обнаружили значительную положительную корреляцию между содержанием почвенного органического вещества и пористостью для пор диаметром 200...600 мкм, при их диаметре более 600 мкм такой зависимости не обнаружено. Уплотнение служит барьером для транспорта кислорода в почве, уровень которого часто определяет активность почвенных бактерий [23]. Большинство почвенных бактерий лучше развиваются при хорошей насыщенности кислородом, который им необходим для разложения большинства соединений углерода. Кроме того, в переуплотненной почве снижается численность беспозвоночных, которые участвуют в разложении органического вещества. Вероятно, вследствие изложенного в почве этого участка сложились условия, при которых процессы гумификации преобладали над минерализацией органического вещества почвы, что привело к увеличению депонирования С ил в почве по оконча-

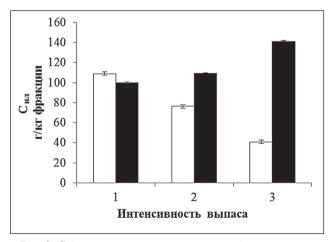


Рис. 2. Содержание органического углерода, связанного с илистой фракцией (С_{их}) в дерново-среднеподзолистой супесчаной почве при разной интенсивности выпаса:

□ – май, ■ – июль.

нии периода наблюдений. Корреляционный анализ выявил достоверную положительную взаимосвязь между плотностью почвы и содержанием углерода илистой фракции, которая изменялась от средней в мае (r=0,48; p<0,05) до сильной в июле (r=0,81 при p<0,05). Взаимосвязь между плотностью почвы и содержанием $C_{\rm opr}$ была отрицательной, но также усиливалась от мая (r=-0,44 при p<0,05) к июлю (r=-0,99 при p<0,05).

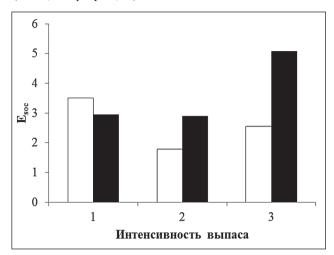


Рис. 3. Величина коэффициента обогащения в дерновосреднеподзолистой супесчаной почве при разной интенсивности выпаса: ☐— май, ■— июль.

Коэффициент обогащения углеродом илистой фракции (E_{soc}) в мае был равен 1,78...3,50, в июле — 2,89...5,07. Наибольший в эксперименте E_{soc} отмечали в почве участка 3 в июле, его величина была больше, чем на участках 1 и 2, в 1,75 раза. Полученные результаты подтвердили наибольшее депонирование углерода минералами илистой фракции в почве участка с сильной интенсивностью выпаса. В этом варианте E_{soc} в пробах почвы, отобранных в конце июля, был в 2 раза выше, чем в мае (рис. 3) и в июле на участках с меньшей интенсивностью выпаса.

Корреляционный анализ выявил слабую связь E_{soc} с $C_{\text{орг}}$ и $C_{\text{ил}}$ в начале наблюдений, по сравнению с их окончанием, когда такая связь была теснее (табл. 1).

Табл. 1. Коэффициенты корреляции (r) между коэффициентом обогащения ${\rm E_{soc}}$, общим органическим углеродом (${\rm C_{opr}}$) и углеродом, ассоциированным с илистой фракцией почвы (C)

			, ил,			
	Май		Июль			
E_{soc}/C_{opr}	$E_{soc}/C_{u\pi}$	C_{opr}/C_{un}	E_{soc}/C_{opr}	$E_{\text{soc}}/C_{_{\text{ил}}}$	C_{opr}/C_{un}	
-0,38	0,53*	0,58*	-0,93*	0,97*	-0,82*	

*достоверны для уровня значимости <math>p=0,05.

Рентгеноструктурный анализ илистой фракции почвы выявил наличие в ней основных породообразующих минералов – кварца, полевых шпатов (калиевых и плагиоклазов), слюд (диоктаэдрических, триоктаэдрических и с дефицитом катионов). Кроме того, присутствовали хлорит, следы смешаннослойных минералов с разным переслаиванием пакетов, в некоторых образцах – следы амфиболов и окислов железа (рис. 4).

В целом в илистой фракции почвы на участке со слабой интенсивностью выпаса отмечено больше полевых шпатов, чем на остальных участках, причем

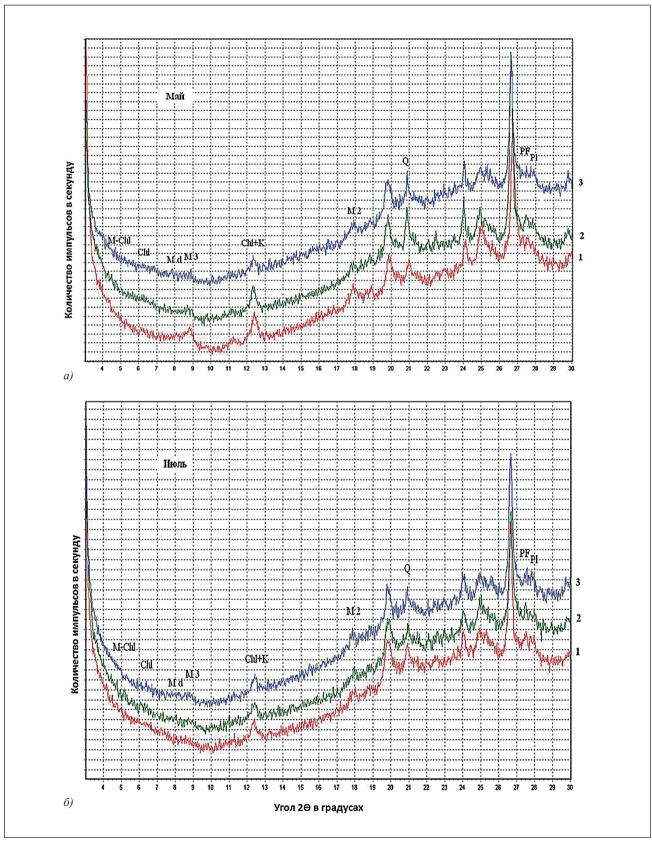


Рис. 4. Рентгенограммы почвенных образцов при слабой (1), средней (2) и сильной (3) интенсивности выпаса в мае (а) и июле (б): M—Chl—смешаннослойный минерал со слюда-хлоритовыми пакетами; Chl—хлорит; Md—слюда с дефицитом катионов; M 3—триоктаэдрическая слюда; Chl+K—хлорит +каолинит; M 2—диоктаэдрическая слюда; Q—кварц; PF—калиевый полевой шпат; Pl—плагиоклаз.

Табл. 2. Диагностические пики минералов (имп./сек)

**	Срок отбора	Смешаннос- лойный Хл минерал	Хлорит	Хлорит+ каолинит	Слюда				Калиевый	
Интенсивность					с дефицитом	триоктаэ-	диоктаэ-	Кварц	полевой	Плагиоклаз
выпаса			•		катионов	дрическая	дрическая	1	шпат	
Слабая	май	_	53	164	53	99	248	600	1049	1163
	июль			164	60		317	705	815	976
Средняя	май		64	256	42	63	383	672	405	577
	июль	32	63	164		63	289	545	438	691
Сильная	май		92	270		89	208	602	344	706
	июль	61		174	47	78	202	659	726	709

в мае их было больше, чем в июле, а на остальных, напротив - в июле содержание полевых шпатов в илистой фракции оказалось несколько выше, чем в мае (табл. 2). Этот факт можно объяснить тем, что при незначительной нагрузке (слабом выпасе) процесс преобразования полевых шпатов проходит в основном под воздействием растений, которые, извлекая необходимые для роста элементы из минералов, активизируют их химическое выветривание. При среднем и сильном выпасе происходит активное разрушение крупных фракций минералов, вследствие чего илистая фракция обогащается полевыми шпатами, а преобразование этих минералов в илистой фракции идет медленнее. С диоктаэдрическими слюдами ситуация обратная, ими илистая фракция обогащается при слабом выпасе, а обедняется при среднем и сильном, что может происходить в результате преобразования полевых шпатов, так как при выветривании им свойственна серицитизация (образование диоктаэдрической слюды - серицита). Триоктаэдрические слюды очень неустойчивы к выветриванию. Не удивительно, что при слабой интенсивности выпаса в июльских образцах их количество было меньше уровня чувствительности прибора, при средней – не изменилось, при сильной – немного уменьшилось. Преобразование слюд происходит с потерей катионов, вследствие чего илистая фракция пополняется слюдами с их дефицитом, которых было больше при слабой интенсивности выпаса.

В майских образцах содержание хлоритов возрастало по мере повышения интенсивности выпаса, в июльских их фиксировали только при средней интенсивности. Лабильный минерал с переслаиванием хлоритовых и слюдистых пакетов выявлен в июльских образцах в вариантах со средней и сильной интенсивностью выпаса, причем его содержание повышалось при увеличении нагрузки на почву. Последнее согласуется с результатами, полученными Савичем В.И. с соавторами [24] на каштановых почвах.

Выводы. По окончании периода наблюдений наибольшим содержанием углерода, связанного с минералами илистой фракции, характеризовались почвы участка с сильной интенсивностью выпаса. В этом же варианте был зафиксирован самый высокий в опыте коэффициент обогащения илистой фракции. Увеличение интенсивности выпаса приводило к повышению содержания органического углерода, ассоциированного с минералами илистой фракции.

Положительное влияние на депонирование органического углерода в илистой фракции почвы оказывали следующие минералы: на участке со слабой интенсивностью выпаса – хлорит, триоктаэдрическая слюда, каолинит; со средней – калиевые полевые шпаты и плагиоклаз; с сильной – слюда с дефицитом катионов. Калиевые полевые шпаты и плагиоклаз оказывали положительное влияние на депонирование углерода в илистой фракции во всех изученных вариантах.

ФИНАНСИРОВАНИЕ РАБОТЫ.

Эта работа финансировалась за счет средств бюджета ФГБНУ «Агрофизический научноисследовательский институт». Никаких дополнительных грантов на проведение или руководство этим конкретным исследованием получено не было.

СОБЛЮДЕНИЕ ЭТИЧЕСКИХ СТАНДАРТОВ.

В этой работе отсутствуют исследования человека или животных.

КОНФЛИКТ ИНТЕРЕСОВ.

Авторы этой работы заявляют, что у них нет конфликта интересов.

Литература.

- 1. Laban P., Metternicht G., Davies J. Soil Biodiversity and Soil Organic Carbon: keeping dry land salive. Gland, Switzerland: IUCN, 2018. 24 p. URL: https://portals.iucn.org/library/sites/library/files/documents/2018–004-En.pdf (дата обращения: 22.09. 2023). doi: 10.2305/IUCN.CH.2018.03.en.
- 2. Grazing exclusion reduced soil respiration but increased its temperature sensitivity in a Meadow Grassland on the Tibetan Plateau / J. Chen, X. Zhou, J. Wang, et al. // Ecology and Evolution. 2016. Vol. 6. No. 3. P. 629–870. doi: 10.1002/ece3.1867.
- 3. Запасы углерода в типичной степи при различном управлении выпасом / Сарула, Х. Чэнь, С. Хоу, и др. // Почвоведение. 2014. № 11. С. 1365—1374. doi: 10.7868/S0032180X14110100.
- 4. Wade C., Sonnier G., Boughton E. H. Does Grazing Affect Soil Carbon in Subtropical Humid Seminatural Grasslands? // Rangeland Ecology & Management. 2022. Vol. 80. P. 10–17. doi: 10.1016/j.rama.2021.09.004.
- 5. Effects of grazing on ecosystem structure and function of alpine grasslands in Qinghai—Tibetan Plateau: a synthesis / X. K. Lu, С. Kelsey, Y. Yan, et al. // Ecosphere. 2017. Vol. 8 (1). Article 1656. URL: https://esajournals.onlinelibrary.wiley.com/doi/10.1002/ecs2.1656 (дата обращения: 22.09.2023). doi: 10.1002/ecs2.1656.
- 6. Grazing intensity significantly affects belowground carbon and nitrogen cycling in grassland ecosystems: a meta-analysis / G. Zhou, X. Zhou, Y. He, et al. // Glob. Chang. Biol. 2017. Vol. 23. P. 1167–1179. doi: 10.1111/gcb.13431.
- 7. Smitha Critical review of the impacts of grazing intensity on soil organic carbon storage and other soil quality indicators in extensively managed grasslands / M. Abdulla, A. Hastingsa, D. R. Chadwickb, et al. // Agriculture, Ecosystems and Environment. 2018. Vol. 253. P. 62–81. doi: 10.1016/j.agee.2017.10.023.
- 8. Gebregerges T., Tessema Z. K., Birhane E. Effect of exclosure ages on woody plant structure, diversity and regeneration potential in the western Tigray region of Ethiopia // Journal of Forest Research. 2017. Vol. 29 (3). P. 697–707. doi: 10.1007/s11676-017-0512-6.

- 9. Carbon sequestration and soil restoration potential of grazing lands under exclosure management in a semi-arid environment of northern Ethiopia / T. Gebregergs, Z. K. Tessema, N. Solomon, et al. // EcolEvol. 2019. Vol. 9. P. 6468–6479. doi: 10.1002/ece3.5223.
- 10. Lavallee J. M., Soong J. L., Cotrufo M. F. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century // Glob. Change Biol. 2020. Vol. 26. P. 261–273. doi: 10.1111/gcb.14859.
- Бойцова Л. В., Непримерова С. В., Зинчук Е. Г. Влияние различных систем удобрений на секвестрацию органического углерода в дерново-глеевой почве // Проблемы агрохимии и экологии. 2019. № 4. С. 15–20.
- 12. Islam Md. R., Singh B., Dijkstra F. A. Stabilisation of soil organic matter: interactions between clay and microbes // Biogeochemistry. 2022. Vol. 160. P. 145–158. doi: 10.1007/s10533-022-00956-2.
- 13. Прямая эмиссия закиси азота из лугопастбищных почв Северо-западного Федерального округа Российской Федерации / Е. Я. Рижия, Н. П. Бучкина, Е. А. Соломатова, Балашов Е. В. // Агрофизика. 2013. № 1. С. 1–7.
- 14. Доспехов Б. А. Методика полевого опыта. М.: Колос, 1979. 419 с.
- 15. Тюрин И. В. Органическое вещество почв и его роль в почвообразовании и плодородии. Учение о почвенном гумусе. М.: ЁЁ Медиа, 2012. С. 290.
- 16. Бойцова Л. В., Непримерова С. В., Зинчук Е. Г. Влияние минералогического состава почв на стабилизацию в них органического углерода // Агрофизика. 2019. № 4. С. 1–8. doi: 10.25695/AGRPH.2019.04.01.
- 17. Christensen B. T. Physical fractionation of soil and organic matter in primary particle size and density separates // Advances in Soil Science. 1992. Vol. 20 (1). 90 p.

- 18. Растворова О. Г. Физика почв (Практическое руководство). Л.: Из-во Ленингр. ун-та, 1983. 196 с.
- 19. Бойцова Л. В., Пухальский Я. В. Динамика содержания органического вещества, его лабильной и инертной частей в дерново-подзолистой супесчаной почве разной степени окультуренности // Агрофизика. 2013 № 3. С. 14–22.
- 20. Бойцова Л. В. Органическое вещество и его легкая фракция в профиле дерново-подзолистой супесчаной почвы // Агрофизика. 2015. № 3. С. 1–8.
- 21. The effect of organic carbon content on soil compression characteristics / K. N. Suravi, K. Attenborough, S. Taherzadeh, et al. // Soil & Tillage Research. 2021. Vol. 209. 104975. URL: https://www.sciencedirect.com/science/article/pii/S0167198721000453?via%3Dihub (дата обращения: 10.10.2023). doi: 10.1016/j.still.2021.104975.
- 22. Preferential transport in macropores is reduced by soil organic carbon / M. Larsbo, J. Koestel, T. Kätterer, et al. // Vadose Zone Journal. 2016. Vol. 15. P. 1–17. URL: https://acsess.onlinelibrary.wiley.com/doi/full/10.2136/vzj2016.03.0021 (дата обращения: 10.10.2023). doi: 10.2136/vzj2016.03.0021.
- 23. Dick R. Lecture on soil bacteria in soil Microbiology, personal collection of R. Dick // The Ohio state University School of Environment and Natural Resources. Columbus. 2009. Vol. 59. P. 15–20. doi: 10.1080/17429145.2011.597002.
- 24. Агроэкологическая оценка минералогического состава почв / В. И. Савич, С. Л. Белопухов, М. Е. Котенко, и др. // Вестник Российского Университета Дружбы Народов. Серия: Агрономия и животноводств. 2016. № 3. С. 30–39. doi: 10.22363/2312-797X-2016-3-30-39.

Поступила в редакцию 10.11.2023 После доработки 14.12.2023 Принята к публикации 09.01.2024