УДК 536.2 (075)

И.В. КУДИНОВ Л.С. АБИШЕВА А.Н. БРАНФИЛЁВА

ИССЛЕДОВАНИЕ СЛОЖНОГО ТЕПЛООБМЕНА В МНОГОСЛОЙНОЙ ЦИЛИНДРИЧЕСКОЙ КОНСТРУКЦИИ, ВКЛЮЧАЮЩЕЙ ЭНЕРГОСБЕРЕГАЮЩИЕ ГАЗОВЫЕ ПРОСЛОЙКИ

RESEARCH OF DIFFICULT HEAT EXCHANGE IN THE MULTILAYERED CYLINDRICAL CONSTRUCTION INCLUDING ENERGY SAVING GAS LAYERS

Проведены экспериментальные и теоретические исследования сложного теплообмена в газовой прослойке, которые позволили провести анализ процесса передачи теплоты, определить вклад каждой составляющей теплообмена (конвективного теплообмена и излучения), найти эквивалентный коэффициент теплопроводности вертикальной цилиндрической воздушной прослойки на различных режимах работы лабораторной установки в широком диапазоне температур (от 0 до 3000 °C). Результаты исследования будут полезны для моделирования теплообменных процессов в газовых прослойках, при выборе наиболее оптимальной (энергоэффективной) толщины прослойки, материала стенок, состава среды и т.д.

Ключевые слова: сложный теплообмен, энергосберегающие газовые прослойки, излучение, система нелинейных уравнений, конвективный теплообмен, эквивалентный коэффициент теплопроводности воздушной прослойки.

Исследование сложного теплообмена в газовых прослойках многослойных конструкций рассмотрено в [3-5]. В настоящей работе представлены результаты экспериментальных и теоретических исследований сложного теплообмена в газовой прослойке, которые позволили провести анализ процесса передачи теплоты, определить вклад каждой составляющей теплообмена (конвективного теплообмена и излучения), найти эквивалентные коэффициенты теплопроводности газовой прослойки в широком диапазоне температур с учетом всех частных особенностей этого процесса.

Передача теплоты излучением происходит посредством электромагнитных колебаний. В зависимости от длины волны различают следующие виды излучения: космическое, гамма–излучение, ренттеновское, ультрафиолетовое, видимое (световое), тепловое (инфракрасное), радиоволны. К излучениям, Pilot and theoretical studies of difficult heat exchange in a gas layer which allowed to carry out the analysis of process of transfer of warmth are conducted to define a contribution of each component of heat exchange (convective heat exchange and radiation), to find equivalent coefficient of heat conductivity of a vertical cylindrical air layer on various operating modes of laboratory installation in the wide range of temperatures (from 0 -to 3000 °C). Results of research will be useful to modeling of heatexchange processes in gas layers, at a choice of the most optimum (power effective) thickness of a layer, a material of walls, environment structure, etc.

Keywords: difficult heat exchange, power effective gas layers, radiation, system of the nonlinear equations, convective heat exchange, equivalent coefficient of heat conductivity of an air layer.

возникновение и распространение которых определяется только температурой излучающего тела и его оптическими свойствами, относятся лишь световое и инфракрасное. Физическая природа их одна и та же – различие лишь в длине волны. В связи с этим процесс их распространения объединяется под одним общим понятием – тепловое излучение.

Количество теплоты, передаваемое путем излучения, становится соизмеримым с конвективными и молекулярными тепловыми потоками лишь при высоких температурах. При очень высоких температурах (камеры сгорания авиационных и ракетных двигателей, плазменные установки и др.) теплообмен излучением может значительно превосходить любые другие виды теплообмена. Поэтому проблема расчёта конструкций, работающих при таких температурах, приобретает особую актуальность. Однако сложность решения краевых задач лучистого теплообмена связана с его нелинейностью. Так, тепловой поток, передаваемый от более нагретой стенки цилиндрической воздушной прослойки к менее нагретой, определяется по формуле

$$q = \varepsilon_{np} c_0 \left[\left(\frac{T_1}{100} \right)^4 - \left(\frac{T_2}{100} \right)^4 \right], \tag{1}$$

где q – тепловой поток, Вт/м²; $c_0 = 5,67$ Вт/(м²• K^4) – коэффициент излучения абсолютно чёрного тела; T_1 , T_2 (T_1 > T_2) – температуры стенок, K; ε_{np} – приведённая степень черноты для замкнутых пространств, определяемая по формуле

$$\varepsilon_{np} = 1/(1/\varepsilon_1 + F_1/F_2(1/\varepsilon_2 - 1)).$$
(2)

В соотношении (2) ε_1 и ε_2 – степени черноты поверхности стенок, через которые происходит передача теплоты путем лучистого теплообмена; F_1 и F_2 – площади меньшей и большей стенок, между которыми находится воздушная прослойка.

Таким образом, нелинейная (степенная) зависимость теплового потока от температуры существенно усложняет расчёты температурного состояния тел, участвующих в лучистом теплообмене.

Испускание и поглощение теплоты в твёрдых (непрозрачных) телах происходит с поверхности. В газах эти процессы всегда протекают в объёме. Однако если твёрдые тела излучают (и поглощают) лучистую энергию всех длин волн (имеют обычно сплошные спектры излучения), то газы – лишь в определённых диапазонах этих длин, называемых полосами, которые расположены в различных частях спектра. Для лучей других длин волн (вне указанных полос) газы прозрачны.

Газ обладает также и собственным излучением (излучение газового объёма). Молекулы газа излучают теплоту в виде фотонов, возникающих в объёме, энергия которых соответствует полосам излучения газа. Результирующий лучистый поток определяется совместным влиянием поглощения и собственного излучения фотонов газовым объёмом. Формула для его определения при лучистом теплообмене между газом и стенкой имеет вид [2]:

$$q_{\mathcal{I}} = \varepsilon_{np} c_0 \left[\left(\frac{T_{\Gamma}}{100} \right)^4 - \left(\frac{T_c}{100} \right)^4 \right], \tag{3}$$

где $\varepsilon_{np} = \varepsilon_r \varepsilon_c / [\varepsilon_c + \varepsilon_r (\varepsilon_c - 1)]$ – приведённая степень черноты; ε_r – степень черноты газа; ε_c – степень черноты стенки; T_{Γ} – температура газа; T_c – температура стенки. Приведённые выше теоретические положения и формулы будут использованы далее при определении температурного состояния конструкций и лучистой составляющей коэффициента теплопроводности.

В настоящей работе была использована авторская методика теплотехнического расчёта многослойных конструкций. Рассмотрим задачу стационарной теплопроводности для трехслойного полого бесконечного цилиндра, в котором внутренний и наружный слои разделены воздушной прослойкой (рис. 1).

Рис. 1. Расчетная схема теплообмена для трехслойного полого цилиндра: 1 – первый слой (асбест); 2 – воздушная прослойка; 3 – третий слой (стекловата)

Температура на внутренней поверхности стенки цилиндра известна и равна t_1 . Снаружи цилиндра теплообмен протекает при граничных условиях третьего рода с известными значениями коэффициента теплоотдачи α и температуры среды $t_{\rm cp}$. Требуется определить тепловой поток через единицу длины цилиндрической стенки и распределение температуры по её толщине. Математическая постановка задачи в данном случае имеет вид

$$q_1 = \pi \left(t_1 - t_2 \right) / \left(\frac{1}{2\lambda_1} \ln \frac{d_2}{d_1} \right);$$
 (4)

91 Вестник СГАСУ. Градостроительство и архитектура | 2014 | № 3 (16)

Ресурсоэнергосбережение

$$q_2 = 5,67\varepsilon_{np} \left[\left(\frac{t_2 + 273}{100} \right)^4 - \left(\frac{t_3 + 273}{100} \right)^4 \right] \pi d_2 ; \quad (5)$$

$$q_3 = \pi (t_3 - t_4) / \left(\frac{1}{2\lambda_3} \ln \frac{d_4}{d_3} \right);$$
 (6)

$$q_4 = \alpha (t_4 - t_{\rm cp}) \pi d_4$$
, (7)

где λ₁, λ₃ – коэффициенты теплопроводности первого и третьего слоёв, Вт/(м·К); q_1 – тепловой поток, переносимый путём теплопроводности через единицу длины первого (внутреннего) слоя цилиндрической стенки, Вт/м; q₂ – лучистый тепловой поток через воздушную прослойку, Вт/м; q₃ – тепловой поток через наружный слой (за счет теплопроводности), Вт/м; q₄ - тепловой поток, переносимый путём конвективной теплоотдачи от единицы длины наружной поверхности цилиндрической стенки в окружающую среду, Вт/м; $t_{\rm cp}$ – температура среды, °С; α – коэффициент теплоотдачи, Вт/(м²·К); є_{пр} – приведённая степень черноты, определяемая по формуле (2), в которой ε₁ - степень черноты наружной поверхности первого слоя; є2 - степень черноты внутренней поверхности третьего слоя; d_1 , d_2 , d_3 , d_4 - диаметры оболочек трехслойного полого цилиндра.

В работе [3] представлен графоаналитический способ решения вышесоставленной системы уравнений. В настоящей работе представлен иной подход к решению системы нелинейных уравнений (4) – (7), который позволяет определять неизвестные этой системы, не прибегая к графической аналитике. При стационарном тепловом режиме тепловые потоки в каждом слое одинаковы, т. е. $q_1 = q_2 = q_3 = q_4 = q$. Поскольку число неизвестных (t_2 , t_3 , $t_{4'}$, q) равно четырём, то система уравнений (4) – (7) является замкнутой. Однако получение точного аналитического решения затрудняется нелинейностью уравнения (5). Для упрощения системы уравнений (4) – (7) сведём уравнения (6) и (7) к одному уравнению. Выразим из (7) температуру t_4 и подставим полученное соотношение в (6).

$$q = \pi \left(t_3 - t_{cp} \right) \left(\frac{1}{2\lambda_3} \ln \frac{d_4}{d_3} + \frac{1}{\alpha d_4} \right).$$
(8)

Из (8) следует, что температура t_4 оказалась исключенной из системы уравнений (4), (5), (8), решение которой следует теперь получить. Для дальнейшего упрощения системы уравнений (4), (5), (8) выразим температуры t_2 из уравнения (4), а t_3 – из уравнения (8) и подставим полученные соотношения в уравнение (5). Отсюда для нахождения искомого теплового потока *q* получаем следующее степенное уравнение:

$$q = \frac{5,67\varepsilon_{np}}{10^8} \left| \begin{pmatrix} q \ln\left(\frac{d_2}{d_1}\right) + 273 \\ - \frac{q \alpha d_4 \ln\left(\frac{d_4}{d_3}\right) + 2\lambda_3 q}{2\lambda_3 \pi \alpha d_4} + t_{cp} + 273 \end{pmatrix}^4 \right|.$$
(9)

Таблица 1

Линейная плотность теплового		Темпера	Эквивалентный коэффициент теплопроводности воздушной			
потока q, Вт/м	t_1	t2	t ₃	t_4	прослойки λ _{экв} , Вт/м К	
8	50	47	33	22	0,033	
67	200	173	127	32	0,081	
167	400	333	289	51	0,212	
272	600	491	457	70	0,445	
376	800	650	623	89	0,802	
479	1000	808	788	108	1,31	
581	1200	968	951	126	2,00	
682	1400	1127	1114	145	2,89	
783	1600	1287	1276	163	4,00	
883	1800	1446	1437	182	5,38	
983	2000	1606	1598	200	7,00	
1084	2200	1766	1759	218	11,4	
1184	2400	1926	1920	237	14,3	
1285	2600	2086	2081	255	17,7	
1385	2800	2246	2241	273	21,5	
1485	3000	2406	2402	292	25.9	

Соотношение (9) представляет уравнение 4-й степени относительно искомого теплового потока q. Оно имеет четыре корня, у трех из которых нет физического смысла (два комплексных и один отрицательный). Таким образом, из решения уравнения (9) имеем один действительный корень, представляющий искомый тепловой поток. Результаты расчётов теплового потока по уравнению (9) для различных значений температуры t_1 внутренней поверхности цилиндрической стенки приведены в табл. 1.

По найденной величине теплового потока, используя формулы (4), (6), (7), были найдены температуры *t*₂, *t*₃, *t*₄, которые также приведены в табл. 1.

Исходные данные для решения задачи следующие (рис. 2, 3):

 d_1 = 0,07 m; d_2 = 0,09 m; d_3 = 0,128 m; d_4 = 0,2 m; λ_1 = 0,1 Bm/(M·K); λ_2 = 0,05 Bm/(M·K); t_{cp} = 20 °C; α = 10 Bm/(M²·K); ε_1 = 0,95; ε_2 = 0,3,

где ε_1 – степень черноты поверхности листового асбеста; ε_2 – степень черноты поверхности алюминиевого листа.

Рис. 2. Схема установки для проведения экспериментальных исследований сложного теплообмена:
1 – слой асбеста; 2 – воздушная прослойка;
3 – слой стекловаты; 4 – полая керамическая трубка;
5 – электрическая спираль; 6 – термопара;
7, 8 – алюминиевые прослойки; 9 – вентилятор

Алюминиевые прослойки имеются на внутренней и внешней поверхностях третьего слоя и служат для размещения между ними слоя стекловаты. Ввиду высокой теплопроводности алюминия $\lambda_1 = 219 \ Bm/(M\cdot K)$ и незначительной толщины каждого слоя $\lambda = 0,5$ мм, их теплопроводностью можно пренебречь. Ввиду достаточно большой длины (1 м) цилиндра, тепловой поток в его центральной части принимается одномерным.

Согласно соотношению (5), теплообмен в воздушной прослойке передаётся только излучением, т. е. без учёта конвективного теплопереноса между стенками и воздухом и молекулярной теплопроводности воздуха. В случае, когда учитываются все три вида теплопереноса (сложный теплообмен), интерес представляет выяснение вклада каждого из них в величину суммарного теплового потока в зависимости от разности температур (t_2 и t_3) на цилиндрических поверхностях, между которыми находится воздушная прослойка.

Для решения такой задачи вместо уравнения (5) необходимо рассмотреть уравнение, включающее излучение, конвекцию и молекулярную теплопроводность в воздушной прослойке, которое в данном случае имеет вид

$$q_{2} = 5,67\varepsilon_{np} \left[\left(\frac{t_{2} + 273}{100} \right)^{4} - \left(\frac{t_{3} + 273}{100} \right)^{4} \right] \pi d_{2} + \frac{2\pi\varepsilon_{k}\lambda_{a}}{\ln(d_{3}/d_{2})} (t_{3} - t_{2}),$$
(10)

где $\varepsilon_k = \lambda_{3\kappa_{\theta}} / \lambda_{\theta}$ – коэффициент конвекции; λ_{θ} – коэффициент теплопроводности воздуха.

Для определения коэффициента конвекции следует воспользоваться формулой, впервые предложенной академиком М.А. Михеевым по результатам обобщения опытных данных для цилиндрических газовых прослоек [1]:

$$\varepsilon_k = 0.18 (Gr_e \operatorname{Pr}_e)^{0.25}$$

Критерий Грасгофа определялся по формуле

$$Gr_{\theta} = g\beta\delta^{3}(t_{2}-t_{3})/v_{\theta}^{2}$$

где β – коэффициент температурного расширения воздуха (рассчитывался по среднеарифметической температуре двух стенок ($t_2 + t_3$)/2), 1/°С; δ – толщина воздушной прослойки, м; v_a – кинематическая вязкость воздуха, м²/с.

Физические параметры воздуха ($\lambda_{o'} v_{o'} \Pr_{o'} \beta$) зависят от температуры внутри воздушной прослойки, поэтому они определялись на основе данных по температуре воздуха, полученных из решения предыдущей задачи (табл. 1). Для более точного определения температуры внешней поверхности цилиндра $t_{4\prime}$ в новой математической постановке учитывается лучистый теплообмен с окружающей средой, а также переменность коэффициента теплоотдачи от внешней стенки к окружающему воздуху (в зависимости от температуры коэффициент теплоотдачи изменялся от 10 до 30 Вт/м² K).

$$q_{4} = \alpha \left(t_{4} - t_{cp} \right) \pi d_{4} + 5,67 \varepsilon_{2} \left[\left(\frac{t_{4} + 273}{100} \right)^{4} - \left(\frac{t_{cp} + 273}{100} \right)^{4} \right] \pi d_{4} .$$
(11)

Для определения коэффициента теплоотдачи рассчитывалось число Нуссельта из критериального уравнения, описывающего теплообмен между свободно движущимся воздухом и нагретой внешней поверхностью цилиндра:

$$Nu_{e} = 0,695Gr_{e2}^{0,25}$$

Зная число Нуссельта, можно легко вычислить коэффициент теплопроводности по формуле

$$\alpha_{e} = N u_{e} \lambda_{e2} / d_{4}$$

где λ_{g2} – теплопроводность воздуха, циркулирующего у внешней поверхности цилиндра, Вт/м К.

Итак, решается система уравнений (4), (6), (10), (11), причём два последних уравнения – нелинейные. Задаётся линейный тепловой поток q, а искомыми величинами в этой задаче являются температуры t₁, t₂, t₃ и t₄.

Сначала из уравнения (11) определяется температура $t_{4'}$ в результате решения этого уравнения относительно t_4 получается 17 корней, из которых 14 – это комплексные корни, 2 корня отрицательные и 1 действительный, который и используется для дальнейшего решения системы. Зная $t_{4'}$ определяется t_3 из уравнения (6). Далее вычисляется t_2 из выражения (10), корней также получается 17, но только один из них имеет физический смысл. Этот корень и используется для нахождения последнего корня системы *t*₁.

Таким образом, все искомые величины рассматриваемой задачи могут быть найдены. Результаты решения нелинейной системы уравнений (4), (6), (10), (11), описывающей с высокой степенью точности (с учётом изменения физических параметров среды от температуры) процессы теплопроводности (уравнения (4) и (6) и процессы сложного теплообмена (уравнения (10) и (11), представлены в табл. 2.

В табл. 2 также приведены значения температур поверхностей слоев и посчитан эквивалентный коэффициент теплопроводности воздушной прослойки, который позволяет оценить интенсивность сложного теплообмена на различных режимах работы установки.

С целью проверки результатов расчетов была изготовлена экспериментальная установка (см. рис. 1, 2). Для задания конкретных значений теплового потока (от 10 до 1400 Вт) и определения их величины, к электрическому нагревателю подключены трансформатор, амперметр и вольтметр. Общее количество теплоты, преобразуемое из электрической энергии в тепловую посредством нагревателя, равно линейной плотности теплового потока *q* (так как длина цилиндра составляет 1 м) и определяется по формуле

$$Q = q = I_{\mu}U_{\mu} . \tag{12}$$

Температуры на поверхностях слоев измеряются при помощи термопар, присоединенных к мультиметру. Контроль температуры внешней поверхности установки t_4 осуществляется при помощи пирометра. Для оперативного перехода с одного режима на другой, а также с целью охлаждения установки использовался вентилятор 9.

Расхождение экспериментальных значений температур с расчётными в зависимости от режима работы находится в пределах 10-15 %.

Таблица 2

							таоница _
Линейная плотность теплового потока q, Вт/м	Линейная плот- ность теплового	Линейная плотность теплового потока, передающегося конвекцией, <i>q_{x'}</i> Вт/м (% от <i>q</i>)	Температура, °С				Эквивалентный коэф- фициент теплопро-
	гося излучением, q _л , Вт/м (% от q)		t_1	t_2	t ₃	t_4	прослойки λ _{эке} , Вт/м К
50	21 (42 %)	29 (58 %)	137	117	96	25	0,13
100	55 (55 %)	45 (45 %)	244	204	174	32	0,19
200	135 (67 %)	65 (33 %)	435	355	325	41	0,37
400	366 (91 %)	34 (9 %)	807	647	621	59	0,86
600	584 (97 %)	16 (3 %)	1183	943	926	74	2,0
800	789 (98,7 %)	11 (1,3 %)	1557	1237	1225	88	3,7
1000	993 (99,3 %)	7 (0,7 %)	1930	1530	1521	100	6,2
1200	1195 (99,6 %)	5 (0,4 %)	2303	1823	1816	110	9,6
1400	1327 (99,9 %)	2 (0,1 %)	2675	2115	2110	120	15,7

Выводы. 1. Анализ полученных результатов позволяет оценить вклад каждой составляющей сложного теплообмена в воздушной прослойке (конвекции и излучения) в суммарную величину теплового потока *q*. В частности, проинтерполировав между значениями теплового потока первого столбца 50 и 100 Вт/м, можно определить значения теплового потока *q* = 80,77 Вт/м, при котором количество теплоты, передаваемое излучением и конвекцией, будет равным.

2. При средней температуре воздуха в прослойке $t_{\rm cp} = (t_2 + t_3)/2=157$ °С тепловое излучение начнёт превалировать над конвективным теплообменом (включающим в себя передачу тепла теплопроводностью), а при температуре воздуха около 1500 °С и выше – 99 % теплоты будет передаваться излучением и лишь 1 % – другими видами теплопереноса.

3. Экспериментальная установка может быть использована не только для исследования особенностей протекания сложного теплообмена, но и для определения теплопроводности материалов, включая их температурную зависимость. Для этой цели используются методы решения обратных задач теплопроводности, когда по известному из эксперимента температурному полю и величине теплового потока из соотношений (4), (6), (10), (11) может быть определен коэффициент теплопроводности любого из слоёв. Аналогичным путём может быть вычислена приведённая степень черноты газов или пористых теплоизоляционных материалов.

Об авторах:

КУДИНОВ Игорь Васильевич

кандидат технических наук, доцент кафедры теоретических основ теплотехники и гидромеханики Самарский государственный технический университет 443001, Россия, г. Самара, ул. Первомайская, 18, тел. (846) 332-42-44

АБИШЕВА Любовь Сергеевна

аспирант кафедры общей и прикладной физики и химии Самарский государственный архитектурно-строительный университет

443001, Россия, г. Самара, ул. Молодогвардейская, 194, тел. (846) 273-66-21

БРАНФИЛЁВА Анастасия Николаевна

аспирант кафедры теоретических основ теплотехники и гидромеханики

Самарский государственный технический университет 443001, Россия, г. Самара, ул. Первомайская, 18, тел. (846) 332-42-44

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. *Михеев М.А., Михеева И.М.* Основы теплопередачи. М.: Энергия, 1997. 344 с.

2. Исаченко В.П., Осипова В.А., Сукомел А.С. Теплопередача. М.: Энергия, 1969. 440 с.

3. Кудинов И.В. Графоаналитический метод расчета потерь теплоты через многослойные стенки при наличии лучистого теплообмена между отдельными слоями // Повышение энергоэффективности зданий и сооружений: межвузовский сборник научных трудов. Вып. 6 / СГАСУ. Самара, 2011. С. 74-80.

4. Вытчиков Ю.С., Евсеев Л.Д., Чулков А.А. Повышение эффективности и долговечности тепловой изоляции трубопроводов систем теплоснабжения с применением скорлуп из пенополиуретана // Вестник СГАСУ. Градостроительство и архитектура. 2013. Вып. № 2 (10). С. 90-93.

5. Сапарев М.Е., Вытчиков Ю.С. Повышение теплозащитных характеристик керамзитобетонных ограждающих конструкций с помощью экранной тепловой изоляции // Строительные материалы. М., 2013. № 11. С. 12-15.

© Кудинов И.В., Абишева Л.С., Бранфилёва А.Н., 2014

KUDINOV Igor

PhD in Engineering Science, Professor of the Thermotechnics Theoretical Foundations and Hydromechanics Chair Samara State Technical University 443001, Russia, Samara, Pervomayskaya str., 18, tel. (846) 332-42-44

ABISHEVA Lubov

Postgraduate Student of the General and Application-Oriented Physics and Chemistry Chair Samara State University of Architecture and Civil Engineering 443001, Russia, Samara, Molodogvardeyskaya str., 194, tel. (846) 273-66-21

BRANFILEVA Anastasia

Postgraduate Student of the Thermotechnics Theoretical Foundations and Hydromechanics Chair Samara State Technical University 443001, Russia, Samara, Pervomayskaya str., 18, tel. (846) 332-42-44

Для цитирования: *Кудинов И.В., Абишева Л.С., Бранфилева А.Н.* Исследование сложного теплообмена в многослойной цилиндрической конструкции, включающей энергосберегающие газовые прослойки // Вестник СГАСУ. Градостроительство и архитектура.2014. Вып. № 3(16). С. 90-95.