ТЕПЛОСНАБЖЕНИЕ, ВЕНТИЛЯЦИЯ, КОНДИЦИОНИРОВАНИЕ ВОЗДУХА, ГАЗОСНАБЖЕНИЕ И ОСВЕЩЕНИЕ

УДК 697.8

DOI: 10.17673/Vestnik.2025.04.06

М. Е. САПАРЁВ С. А. МИНКИНА В. С. РЯБОВОЛ

ПРЕОБРАЗОВАНИЕ УГАРНОГО И УГЛЕКИСЛОГО ГАЗОВ ИЗ ПРОДУКТОВ СГОРАНИЯ В ХИМИЧЕСКИ ПОЛЕЗНЫЕ ВЕЩЕСТВА

CONVERSION OF CARBON MONOXIDE AND CARBON DIOXIDE FROM COMBUSTION PRODUCTS INTO CHEMICALLY USEFUL SUBSTANCES

Задача статьи — рассмотрение процессов полного и неполного сгорания газа в топочной камере котельного агрегата, количества и состава продуктов сгорания, предложений по преобразованию этих продуктов в химически полезные вещества и их дальнейшему использованию. Предложен соответствующий вариант реконструкции газового тракта котельной.

Ключевые слова: природный газ, угарный газ, углекислый газ, продукты сгорания, полное и неполное сгорание, углеводороды, катализатор

Введение

Из-за большого выделения утарного и углекислого газов в атмосферу возникает ряд проблем. Загрязнённый воздух вызывает респираторные заболевания, например астму и бронхит, может провоцировать болезни сердечно-сосудистой системы, диабет и онкологические заболевания. Газы, загрязняющие атмосферу, из воздуха попадают в осадки, а оттуда в почву, что вызывает отравление живых существ и нарушение пищевых цепочек.

Виды продуктов при полном и неполном сгорании газа

Котельные агрегаты, использующие в качестве топлива природный газ [1], в настоящее время широко применяются благодаря своей высокой эффективности и экологической чистоте, что

The objective of this article is to consider the processes of complete and incomplete combustion of gas in the combustion chamber of a boiler unit, the amount and composition of combustion products, proposals for converting these products into chemically useful substances and their further use. A corresponding option for reconstructing the gas path of a boiler room is proposed.

Keywords: natural gas, carbon monoxide, carbon dioxide, combustion products, complete and incomplete combustion, hydrocarbons, catalyst

делает их идеальным выбором для отопления как жилых, так и промышленных объектов [2, 3].

В зависимости от количества воздуха, подаваемого в топку котельного агрегата, происходит полное или неполное сгорание топлива [4].

Химическая реакция полного сторания природного газа [5]:

$$CH_4 + 2O_2 + 7,52N_2 = CO_2 + 2H_2O + 7,52N_2$$
.

В результате полного сгорания газа образуются негорючие газы, такие как углекислый газ (CO_2), азот (N_2) и водяные пары ($\mathrm{H}_2\mathrm{O}$). Пламя прозрачно-голубоватого цвета. При неполном сторании газа (из-за недостаточного количества воздуха) выделяется: угарный газ (CO), несгоревшие горючие углеводороды, атомный углерод (сажа). В атмосферу выходит азот, непрореагировавший кислород, водяные пары (в количестве 2 м³ из 1 м³ газа). Визуально при

полном сторании пламя светло-голубое или голубовато-фиолетовое.

Топливо в котельном агрегате может сгорать полностью или неполностью, это можно определить по коэффициенту полезного действия котельного агрегата.

При полном сторании газа выделяется углекислый газ. Этот газ можно отделить от остальных продуктов сторания, пропустив его через хлопчатый гидроксид калия. В результате реакции образуется карбонат калия, известный как поташ. Указанное взаимодействие между концентрированным гидроксидом калия и углекислым газом описывается следующим уравнением [5]:

$$2KOH + CO_2 = K_2CO_3 + H_2O_4$$
 (1)

где 2КОН – концентрированный гидроксид калия; CO_2 – углекислый газ; K_2CO_3 – карбонат калия (поташ); H_2O – вода.

В промышленности поташ представлен в двух формах: кальцинированный и полутораводный. В зависимости от их физико-химических свойств поташ классифицируется на несколько сортов. Этот материал применяется в различных отраслях, включая химическую и стекольную промышленность, в противопожарных мероприятих, в легкой промышленности и других сферах. В строительстве поташ служит в качестве добавки, предотвращающей замерзание бетона, а в химической промышленности используется для производства красок и более эффективно, чем сода, удаляет сероводород из газовых смесей. В легкой промышленности потом применяется при обработке кожи, в производстве детергентов. Он также является компонентом оптического стекла. В сфере пожарной безопасности поташ применяется для обработки деревянных конструкций. Кроме того, он зарегистрирован как пищевой консервант Е501.

При неполном сгорании образуется угарный газ. Предлагается использовать его реакцию с гидроксидом калия для синтеза формиата калия. Известно, что угарный газ не является солеобразующим оксидом, но при определенных условиях, а именно при высоком давлении и температуре 120–130 °C, возможно протекание реакции [5]:

$$CO + KOH = HCOOK,$$
 (2)

где CO – угарный газ; KOH – гидроксид калия; HCOOK – формиат калия.

Формиат калия (также известный как калий муравьинокислый, химическая формула HCOOK и KHCO₂) представляет собой органическое соединение, соль муравьиной кислоты.

В чистом виде это белый мелкокристаллический порошок без запаха.

Формиат калия находит применение в различных сферах:

- в виде водного раствора для добуривания и ремонта буровых скважин;
- в строительстве в качестве антиморозной добавки в бетон, штукатурку и клей для плитки;
- в холодильных системах и кондиционерах как компонент хладоносителя;
- в пищевой промышленности как консервант и заменитель соли;
- как добавка в антиобледенительные материалы для уменьшения воздействия на окружающую среду и металлические части транспорта;
- для производства раствора для травления при окрашивании текстиля и обоев.

Угарный газ способен взаимодействовать с водородом, в результате чего образуются органические соединения (процесс Фишера-Тропша, химическая реакция, протекающая в присутствии катализатора, в которой угарный газ и водород превращаются в различные жидкие углеводороды) [5]. В основном используются катализаторы на основе железа и кобальта. Наиболее известное применение этого процесса – производство синтетических углеводородов для масел или топлива без использования нефти, например из угля.

В статье для расчетов была принята котельная с тремя котлами КВГМ-30 и одним котлом КВГМ-20 для г. Брянска. Все расчеты были выполнены в соответствии с методическим пособием [6]: расчет процессов горения – табл. 1; расчет теплосодержания воздуха и продуктов сгорания – табл. 2; плотность дымовых газов – $\rho_{\rm c}^{\rm c}=0.77~{\rm kr/m^3};$ тепловой баланс для каждого котла – табл. 3; аэродинамический расчет котельного агрегата, в котором: дымовая труба принята из кирпича 45 м; количество дымовых газов, проходящих через дымовую трубу, $V_{\rm TP}=220486,1~{\rm m^3/ч},$ средняя температура дымовых газов на участке до дымовой трубы $\theta_{\rm CP}=150,37~{\rm ^{o}C},$ средняя скорость дымовых газов $w_{\rm cp}=13,12~{\rm m/c}.$

Кроме того, были выполнены расчеты по количеству используемых и получаемых веществ для реакции (2) [7]. Реакция происходит при условиях: t = 120 - 130 °C и $P = P_{arm}$.

Пусть V(CO) = 100 м³.

Тогда n(CO) = V/Vм кмоль;
n(CO) = 100 м³ / 22,4 м³/кмоль = 4,46 кмоль;
n(CO) : n(KOH) = 1:1, следовательно,
n(KOH) = 4,46 кмоль;
m(KOH) = n×M;
m(KOH) = 4.46 кмоль × 56 кг/кмоль

 $m(KOH) = 4,46 \text{ кмоль} \times 56 \text{ кг/кмоль} = 249,76 кг – нужно взять КОН на <math>100 \text{ м}^3$ (CO); n(CO) : n(HCOOK) = 1:1, следовательно,

n(HCOOK) = 4,46 кмоль × 101 кг/кмоль = 450,46 кг – выход продукта в массе.

Таблица 1. Результат расчета процессов горения Table 1. Calculation results for combustion processes

	$V^0 = 9.91 \text{ m}^3/\text{m}^3$; $V_{\text{H2O}}^0 = 2.04 \text{ m}^3/\text{m}^3$;		
	$V_{RO2} = 1,06 \text{ m}^3/\text{m}^3; V_{N2}^0 = 7,84 \text{ m}^3/\text{m}^3$		
Величина и расчетная формула		Газоход конвективного пучка	
		первый	второй
Коэффициент избытка воздуха за поверхностью нагрева α = $\alpha_{_{\rm T}}$ + $\Sigma\Delta\alpha_{_{\rm i}}$	1,10	1,15	1,25
Средний коэффициент избытка воздуха в поверхности нагрева $\alpha_{\rm cp} = (\alpha' + \alpha'')/2$	1,08	1,13	1,20
Объём избыточного воздуха (α_{cp} - 1) V^0 , M^3/M^3	0,74	1,24	1,98
Действительный объем водяных паров $V_{\rm H2O'}$ м $^3/{\rm M}^3$	2,06	2,06	2,08
Действительный объем дымовых газов V_{r} , m^3/m^3	11,69	12,19	12,93
Объемная доля трехатомных газов в продуктах сгорания P_{RO2}	0,09	0,09	0,08
Объемная доля водяных паров в продуктах P_{H2O}	0,18	0,17	0,16
Суммарная доля трехатомных газов и водяных паров, $r_n = r_{RO2} + r_{H2O}$	0,27	0,26	0,24
Масса дымовых газов (привести формулу для соответствующего вида топлива)	14,68	15,33	16,30

Таблица 2. Расчет теплосодержания воздуха и продуктов сгорания Table 2. Calculation of the heat content of air and combustion products

			$I_r = I_r^\circ + (\alpha - 1) \cdot I_B^\circ M M \times M^3$		
q, °C	I о МДж/м³	I ₀, МДж/м³	$\alpha_{_{\mathrm{T}2}} = 1.1$	$\alpha_{\text{\tiny IKII}}^{\prime\prime}$ = 1,15	$\alpha_{\text{IIKIT}}^{\prime\prime}$ = 1,25
			I,''	I _{Iкп} ′′	I _{IIкп} ′′
100	1,52	1,31	1,65	1,72	1,85
200	3,07	2,63	3,34	3,47	3,73
300	4,66	3,96	5,06	5,25	5,65
400	6,29	5,34	6,83	7,09	7,63
500	7,96	6,74	8,64	8,97	9,65
600	9,67	8,18	10,49	10,90	11,71
700	11,43	9,65	12,39	12,88	13,84
800	13,24	11,14	14,35	14,91	16,02
900	15,08	12,63	16,34	16,97	18,24
1000	16,96	14,15	18,38	19,08	20,50
1100	18,85	15,72	20,42	21,20	22,78
1200	20,70	17,28	22,43	23,30	25,02
1300	22,69	18,85	24,58	25,52	27,40
1400	24,68	20,46	26,72	27,75	29,79
1500	26,65	22,07	28,85	29,96	32,16
1600	28,65	23,68	31,02	32,20	34,57
1700	30,67	25,29	33,20	34,47	37,00
1800	32,70	26,90	35,39	36,73	39,42
1900	34,75	28,55	37,61	39,04	41,89
2000	36,80	30,20	39,82	41,33	44,35

Таблица 3. Тепловой баланс котла КВГМ-20 Table 3. Thermal balance of the KVM-20 boiler

Рассчитываемая величина	Формула или обоснование	Результаты расчета
Располагаемое тепло топлива $Q_p^{\ \ p}$, МДж/м³	Привести формулу для данного вида топлива	37,09
Температура уходящих газов $v_{yx'}$ °C	Принимается из характеристик котла	160
Теплосодержание уходящих газов $I_{yx'}$ кДж/ м³	Принимается по таблице теплосодержаний	2978
Температура холодного воздуха $t_{_{XB'}}$ °C	Принимается по заданию	30
Теплосодержание холодного воздуха $I_{xs}^{\ \ o}$, кДж/ M^3	$I_{xB}^{\ o} = V^{o} \cdot C_{xB} \cdot t_{xB}$	396,01
Потери тепла с уходящими газами $q_{2'}$ %	$q_2 = Q_2 / Q_p^{P} \cdot 100 = (I_{yx} - \alpha_{yx} \cdot I_{xB}^{O}) \cdot (100 - q_4) / Q_p^{P}$	6,7
Потери тепла от химической недожога $q_{_{3'}}$ %	Принимается по приложению 3–5 по виду сжигаемого топлива и виду топки	1,5
Потери тепла в окружающую среду q ₅ , %	Рассчитывается по виду котла	1,163
Суммарные потери тепла ∑qі , %	$q_2 + q_3 + q_5$	9,363
КПД котла $\eta_{\kappa.a.'}$ %	η _{к.а.} =100− ∑qi	90,64
Тепло, полезно используемое в к.а., $Q_{\text{к.а.}}$ МДж/м ³	Рассчитывается по виду котла (привести соответствующую формулу)	93948,18
Полный расход топлива β, м³/ч	$\beta = Q_{\kappa.a.} \cdot 100/Q_p^{P} \cdot \eta_{\kappa.a.}$	2785
Расчетный расход топлива $\beta_{p'}$ м³/ч	eta_{p} = eta , мазут, газ eta_{p} = eta ·(1 - q_{4} /100), твердое топливо	2785
Коэффициент сохранения тепла φ	$\varphi = 1 - q_5 / (q_5 + \eta_{K.a.})$	0,99

Аналогично был выполнен расчет по формуле (1) для получения K_2CO_3 .

В результате установлено, что из 100 м 3 СО и 100 м 3 КОН получается 450 кг формиата калия (HCOOK), а из 100 м 3 СО $_2$ и 100 м 3 КОН получается 1231 кг карбоната калия – поташ (K $_2$ CO $_2$).

Применим данные расчеты к нашему примеру: при полном сторании получаем 2714183,891 кг карбоната калия, при не полном сторании – 992187,45 кг формиата калия.

Предложение по использованию продуктов сгорания

Как отмечено ранее, при полном сгорании выделяется углекислый газ, в случае неполного сгорания – угарный газ (СО). Для их утилизации на основе реакций (1) и (2) предлагается использовать концентрированный гидроксид калия.

Газовый тракт котельной делится на два участка: первый – от котла к дымососу, второй – от дымососа к дымовой трубе [6]. В данном исследовании рассматривается реконструкция второго участка. Ранее дымовые газы

проходили путь от котлов к дымовой трубе в едином газоходе. Предлагается сделать два пути и расположить в них КОН (хлопчатый). Вещество засыпают в сетчатые фильтры (ёмкость, состоящая из сетчатых пластин), которые будут располагаться внутри труб. Первый путь будет использоваться для режима полного сгорания, второй – для неполного сгорания. Необходимо учитывать углы наклона труб в зависимости от режима работы котельной. При попадании газа в любую из труб происходит реакция с химическим веществом, однако если часть газа не вступила в реакцию, то он удаляется через дымовую трубу. Расходный материал можно транспортировать в железнодорожных вагонах (тип вагонов: зерновой). Материалы, используемые для установки, - железо и чугун. Всего, как показывают расчеты, потребуется три одинаковых блока, чтобы продукты сгорания полностью прореагировали с гидроксидом калия. В конечном варианте, при соблюдении всех условий реакции, мы можем получить при полном сгорании (1) карбонат калия (К,СО,), при неполном сторании (2) – формиат калия (HCOOK). Химически полезные вещества (карбонат калия и формиат калия) будут поступать в резервуар (накопительный бак) [8, 9]. Из резервуара можно будет провести транспортировочные трубы для дальнейшего использования на различных предприятиях.

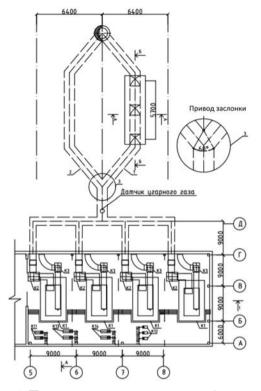


Рис. 1. План котельной с установкой отбора газов Fig. 1. Layout of a boiler room with gas sampling equipment

На рис. 1 приведена часть плана котельной [7] (котельные агрегаты с обвязкой газоходами к дымовой трубе) с установкой на втором участке газового тракта (дымосос – дымовая труба) установки по отбору газов. На рис. 2 показаны разрезы А-А и Б-Б газового тракта котла.

Вывод

Согласно выполненным расчетам, предлагаемая установка позволит перерабатывать угарный и углекислый газы в полезные химические вещества для дальнейшего использования. Таким образом, предложенная установка позволит одновременно получать полезные химические вещества и улучшать экологическую ситуацию за счет дополнительной очистки выбросов.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Свод правил «Котельные установки». Актуализированная редакция «СНи Π II-35-76» «СП 89.13330.2016».
- 2. *Минкина С.А., Урядов М.И.* Реконструкция газоходов водогрейных котлов с монтажом дымососов уходящих газов // Градостроительство и архитектура. 2020. Т. 10, № 4. С. 42–49. DOI:10.17673/ Vestnik.2020.04.6.
- 3. Баландина О.А., Пуринг С.М. Исследование влияния температуры воздуха на уровень выделения оксидов азота в дымовых газах котельных установок // Градостроительство и архитектура. 2019. Т. 9, №4. С. 27–32. DOI:10.17673/Vestnik.2019.04.5.

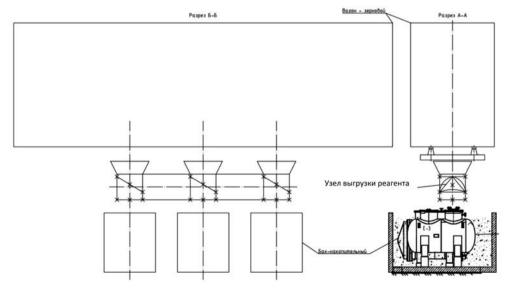


Рис. 2. Разрезы A-A и Б-Б Fig. 2. Sections A-A and B-B

- 4. Теплогенерирующие установки / Г.Н. Делягин, В.И. Лебедев, Б.А. Пермяков, П.А. Хванов. М.: Бастет, 2010. 425 с.
- 5. Власова И.В., Усова С.В. Аналитическая химия и физико-химические методы анализа. Омск: Изд-во Омского гос. ун-та, 2014. 109 с.
- 6. Минкина С.А. Тепловой и аэродинамический расчеты котельных агрегатов. Самара: СамГАСУ, 2013. 104 с.
- 7. *Иванов А.П., Сидоров Б.Н.* Технология получения и применения карбонатов и формиатов калия // Химическая промышленность. 2019. №4. С. 45–52.
- 8. *Минкина С.А.* Тепловые схемы котельных установок. Расчет и проектирование оборудования. Самара: СамГАСУ, 2015. 130 с.
- 9. Роддатис К.Ф., Полторецкий А.Н. Справочник по котельным установкам малой производительности. М.: Энергоатомиздат, 1989. 488 с.

REFERENCES

- 1. Code of Rules "Boiler Plants", Updated Edition of "SNiP II-35-76" "SP 89.13330.2016".
- 2. Minkina S.A., Uryadov M.I. Reconstruction of Gas Ducts of Water Boilers with Installation of Flue Gas Pumps. *Gradostroitel'stvo i arhitektura* [Urban Construction and Architecture], 2020, vol. 10, no. 4, pp. 42–49. (in Russian) DOI: 10.17673/Vestnik.2020.04.6

Об авторах:

САПАРЁВ Михаил Евгеньевич

кандидат технических наук, доцент кафедры теплогазоснабжения и вентиляции Самарский государственный технический университет 443100, Россия, г. Самара, ул. Молодогвардейская, 244 E-mail: msx072007@yandex.ru

МИНКИНА Светлана Абрамовна

старший преподаватель кафедры теплогазоснабжения и вентиляции Самарский государственный технический университет 443100, Россия, г. Самара, ул. Молодогвардейская, 244 E-mail: minkina.svetlana2011@yandex.ru

РЯБОВОЛ Владислав Сергеевич

инженер-проектировщик 3 категории ООО «ПриволжскНИПИнефть» 443125, Россия, г. Самара, ул. Силовая, 11 E-mail: r.v.s.03@mail.ru

- 3. Balandina O.A., Puring S.M. Research of Influence of Air Temperature on the level of nitrogen oxides in smoke gases of boiler plants. *Gradostroitel'stvo i arhitektura* [Urban Construction and Architecture], 2019, vol. 9, no. 4, pp. 27–32. (in Russian) DOI: 10.17673/Vestnik.2019.04.5
- 4. Delyagin G.N., Lebedev V.I., Permyakov B.A., Khvanov P.A. *Teplogenerirujushhie ustanovki* [Heat generating units]. Moscow, Bastet, 2010. 425 p.
- 5. Vlasova I.V., Usova S.V. *Analiticheskaja himija i fiziko-himicheskie metody analiza* [Analytical Chemistry and Physical and Chemical Methods of Analysis]. Omsk, Publishing House of Omsk State University, 2014. 109 p.
- 6. Minkina S.A. *Teplovoj i ajerodinamicheskij raschety kotel'nyh agregatov* [Thermal and aerodynamic calculations of boiler units]. Samara, SamGASU, 2013. 104 p.
- 7. Ivanov A.P., Sidorov B.N. Technology of Production and Application of Potassium Carbonates and Formiates. *Himicheskaja promyshlennost'* [Chemical industry], 2019, no. 4, pp. 45–52. (in Russian)
- 8. Minkina S.A. *Teplovye shemy kotel'nyh ustanovok. Raschet i proektirovanie oborudovanija* [Thermal Schemes of Boiler Plants. Calculation and Design of Equipment]. Samara, Samgasu, 2015. 130 p.
- 9. Roddatis K.F., Poltoreckij A.N. *Spravochnik po kotel'nym ustanovkam maloj proizvoditel'nosti* [Handbook on Small-Capacity Boiler Plants]. Moscow, Energoatomizdat, 1989. 488 p.

SAPAREV Mikhail Ev.

PhD in Engineering Science, Associate Professor of the Heat and Gas Supply and Ventilation Chair Samara State Technical University 443100, Russia, Samara, Molodogvardeyskaya st., 244 E-mail: msx072007@yandex.ru

MINKINA Svetlana Ab.

Senior Lecturer of the Heat and Gas Supply and Ventilation Chair Samara State Technical University 443100, Russia, Samara, Molodogvardeyskaya st., 244 E-mail: minkina.svetlana2011@yandex.ru

RYABOVOL Vladislav S.

Design Engineer of category 3 LLC PrivolzhskNIPIneft 443125, Russia, Samara, Silovaya st., 11 E-mail: r.v.s.03@mail.ru

Для цитирования: *Сапарёв М.Е., Минкина С.А., Рябовол В.С.* Преобразование угарного и углекислого газов из продуктов сгорания в химически полезные вещества // Градостроительство и архитектура. 2025. Т. 15, № 4. С. 40–45. DOI: 10.17673/Vestnik.2025.04.06.

For citation: Saparev M.E., Minkina S.A., Ryabovol V.S. Conversion of carbon monoxide and carbon dioxide from combustion products into chemically useful substances. *Gradostroitel'stvo i arhitektura* [Urban Construction and Architecture], 2025, vol. 15, no. 4, pp. 40–45. (in Russian) DOI: 10.17673/Vestnik.2025.04.06.

Принята: 10.10.2025 г.