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Artificial neural networks can be widely used in various fields: economics, medicine, space grown, etc. However,
using neural networks to solve a particular problem arises the problem of choosing an effective structure of neural net-
works. Solving these problems is an important step in the application of neural network technology to practical prob-
lems, since these stages directly affects the quality (value) of the resulting neural network model. However, this takes
more time and material resources, which leads to the need to automate the process. For this purpose the use of multic-
riteria evolutionary algorithms, such as SPEA, SPEA2 and NSGAII is offered as they can solve two problems at once.
Firstly, they can generate a neural network, thus saving computational resources. And secondly, they can solve tasks
quite efficiently.

Modified evolutionary algorithms that produce selection of the most informative features, do not improve perform-
ance of algorithms that use all the inputs on the problems of small dimension, but significantly improve the accuracy,
increasing dimension.

The modified algorithms together with automatic design structure of artificial neural networks determine the most
informative features, and include as inputs only weakly correlated with each other variables of the original problem.

Keywords: artificial neural networks design, evolutionary algorithms, multicriteria optimization, most informative
features, classification.
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Hcxyccmeennvie neliponnbvle cemu Mozym 0bimb WUpoKo UCNONb308AHbL 8 PA3IUUHBIX 00AACAX: IKOHOMUKE, MeOU-
yune, kocmuueckou ompacau u m. n. OOHAKO NPU UCNOTL306AHUY HEUPOHHBIX cemell 0N peuleHUs. KOHKPemHoul 3a0a4u
603HUKAem npobrema ebl6opa d¢hgexmuenot cmpykmypsl HetipoHHOU cemu. Pewenue smux npobiem Aeiaemcs 6adic-
HbIM 2MANOM NPUMEHEHUS HelipOocemesblX MexHoI02Ull 01 NPAKMUYECKUX 3a0ay, max Kax om 3mux 5manog Hanpsamyro
3a6uUcum Kawecmeo (a0eK8amHoCmy) NOIYUeHHOU Helpocemesoll moodenu. Oonako smo mpebyem OONLUIUX 3amMpam
BPEMEHHBIX U MAMEPUATILHBIX PeCypCos, Ymo NPUgoOUm K HeoOX0OUMOCmuU agmomamusuposams npoyecc. ni 3mozo
npeonazaemcs UCNOIb308AMb MHOLOKPUMEPUATIbHbIE 380I0YUOHHbLe ancopummsl, makue kak SPEA, SPEA2 u NSGAIL
MAax Kax OHU MO2Ym pewiams cpazy 06e npobiembl: 60-Nepeblx, 2eHepupo8ams HeboIbUUe HelpOHHbIe cemu, memM ca-
MbLM DKOHOMSL BLIYUCTUMENbHBIE PECYPChl, d 80-6MOPbIX, peulams NOCMAsNIeHHble 3a0ail O0CMAMOYHO KAYeCMEEHHO.

Moouguyuposarnvie 260110yUOHHBIE ANCOPUMMBL, KOMOPbIe NPOU3BOOAM 0MOOp Haubosee UHGOPMAMUBHBIX NPU-
3HAKOB, He YAYUWAIom pabomy aicopummos, UCNONbL3VIOWUX 8Ce 6X00bl HA 3A0a4ax MAlol pasmMepHOCmU, HO 3HAYU-
MeNbHO NOBLIUAIOM MOYHOCb NPU POCME PAZMEPHOCHIU.

Moouguyuposannvie aneopummusl 0OHOBPEMEHHO C ABMOMAMUYECKUM NPOEKMUPOSAHUEM CMPYKIMYPbl UCKYCCHI-
BEHHbIX HEUPOHHBIX cemell onpedensiom Haubonee UHGOPMAMUEHbIE NPUSHAKY, NPUYEM GKII0UAION 8 KA4ecmee 6X0008
MOILKO C1aO0 KOPPenupoBanHle 0pye ¢ OpyeomM nepemeHHble UCXOOHOU 3a0adu.

Kniouegvie crosa: uckyccmeenmvie HellpoHHblE cemu, I60TOYUOHHbLE ANCOPUMMbL, MHO2OKPUMEPUANLHAS ONMUMU-
3ayus, Hauboee UHPOPMAMUBHbBLE NPUSHAKU, KIACCUDUKAYUSL.
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Introduction. The intensity of the use of intelligent
information technologies (IIT) [1] is increasing in all ar-
eas of human activity. This is not only due to increasing
computing power, which can be used to solve challenging
real-world problems, but also due to the ability of sys-
tems, based on the use of IIT, to deal effectively with a
wide range of tasks: pattern recognition, classification,
function approximation, prediction and control [2].

Usually, the implementation of IIT is a time-
consuming and complex process. If a researcher decides
to use artificial neural networks (ANN) [3] to solve a real
world problem, he/she will face the problem of choosing
the ANN structure. In contrast to the tuning of weighting
coefficients, this issue is not so widely discussed in scien-
tific papers.

In real world problems the dimension can be high, so
there is a need to implement the pre-processing of data to
reduce the amount of computation effort. An automated
choice of the most informative features allows the re-
searcher to keep the performance at an acceptable level
using fewer resources.

Since in the design of artificial neural networks it is
often difficult to find a compromise between accuracy and
the simplicity of the solution obtained by the networks,
researchers are encouraged to use evolutionary algorithms
of multicriteria optimization, such as Non-dominated
Sorting Genetic Algorithm II (NSGAII) [4], Strength
Pareto Evolutionary Algorithm (SPEA) [5], Strength
Pareto Evolutionary Algorithm 2 (SPEA2) [5]. The effec-
tiveness of these techniques is studied in this paper.

1. Evolutionary Algorithms for Optimization

Genetic algorithm for unconditional one-criterion
optimization. Genetic algorithms (GA) belong to the
class of adaptive stochastic optimization algorithms [6].
For solving optimization problems a GA allocates a fixed
amount of resources determined by the number of indi-
viduals in a population and the number of generations.
The evaluation of GA effectiveness was fulfilled for dif-
ferent combinations of genetic operators. The identifying
of the best settings was carried out by comparing indica-
tors such as the reliability of the algorithm and the aver-
age number of generations (iterations), for which a solu-
tion was found with a specified accuracy. The reliability
is the proportion of GA successful runs. The algorithm
with the highest reliability was considered as the best one.
Combinations of settings with the same reliability were
compared with the second indicator: the smaller the aver-
age number of iterations is, the more effective is the algo-
rithm. The required accuracy is equal to 0.01. The results
obtained were averaged over 100 runs. The reliability
values averaged over all tasks as well as their variations
are given in tab. 1. The last column shows the average
generation numbers when solutions were found and the
scatter throughout all tasks. The effectiveness of the algorithm
was verified on an international set of test problems [7].

Table 1
The results of GA for test problems
of unconditional optimization
Reliability Generations
The best settings GA | 0,937 [0.471; 1] 21.7 [15; 32]
Medium setting GA 0.722[0.214; 0.961] | 14.2 [12;45]
The worst setting GA | 0.55 [0.147; 0.92] 52.9 [14; 69]
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Analysis of results showed that usually proportional
selection, two-point crossover and average mutation are
the best settings. Sometimes the best algorithm includes
the one-point crossover. The algorithm with tournament
selection (tournament size is equal to 3), one-point cross-
over and low mutation is the worst one.

Evolutionary algorithms for unconditional multic-
riteria optimization. In its most general form, solving the
problem of multicriteria optimization requires the finding
of an optimal set of K criteria. Non-dominated points in
the domain are called the Pareto set, and their image in
the space of criteria is the Pareto front. Usually in multic-
riteria optimization problems it is sufficient to choose
a solution from the Pareto set; these points cannot be pre-
ferred to one another but are better than any others.
So after the formation of the Pareto set representative
approximation the task is considered to be solved [8].

There are many variants of evolutionary algorithms,
which can be used for solving multicriteria optimization
problems. This paper discusses the Non-dominated sort-
ing Genetic Algorithm II (NSGAII) [4], Strength Pareto
Evolutionary Algorithm (SPEA) and Strength Pareto Evo-
lutionary Algorithm 2 (SPEA2) [5].

The efficiency of the algorithms was investigated on
the international set of test multiciriteria optimization
problems [9]. Summary results are presented in tab. 2,
which shows the evaluation of the effectiveness of the
multicriteria optimization algorithms. Algorithm settings
are considered to be the “best” if the solutions found re-
ceived more points in the Pareto front, as well as if the
variation in the spaces of alternatives and criteria is
maximized. Tab. 2 also shows estimations of the algo-
rithms with settings that were the worst according to the
above criteria and the result averaged over all settings.

The evaluation of the effectiveness of algorithms was
performed using three metrics: percentage points in the
external Pareto set (%), the scatter of points in the space
of solutions of the exterior set (X), and the scatter of
points in the space of external criteria set (Y). All these
criteria should be maximized.

Table 2
The results of testing evolutionary algorithms
for multicriteria optimization

The best Average Worst

NSGAIl | % 84 74 52

X | 097671259 0.947632 0.9093986

Y | 0.969613066 | 0.94658963 | 0.92338803
SPEA % 93 70 54

X | 0.6079351 0.5958682 0.556933

Y | 0.719441 0.71654223 | 0.7102566
SPEA2 % 75 71 67

X | 0.7126218 0.5197434 0.309482

Y | 0.9603189 0.83283465 | 0.7125409

Analysis of the test results shows:
— SPEA 2 solves the problem better than SPEA in the
sense of the second and third metrics;
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— SPEA 2 spends more time on computations;

— NSGA 1I solves the problem better than SPEA and
SPEA2: it gives minimal deviation from the Pareto set
and a more uniform distribution of the obtained non-
dominated solutions.

Thus, it was found that NSGA II with average muta-
tion and uniform crossover is the most effective algo-
rithm, i. e. the Pareto front includes the highest number of
points from the external set, and also their variation in the
spaces of alternatives and criteria is maximal.

2. Artificial Neural Networks

Genetic algorithm for adjusting of the ANN weight
coefficients (GA-ANNW). The error back-propagation
algorithm is one of the commonly used methods for train-
ing multilayer neural networks. This method has the fol-
lowing serious drawbacks:

— frequently converged into a local minimum;

— strong influence of the choice of the step size on the
quality of the solution found.

In order to improve the accuracy of solutions it is pos-
sible to use a genetic algorithm for ANN training since it
is effective for solving global optimization problems and
could avoid the above-mentioned problems.

In this paper, the genetic algorithm was implemented
to adjust the weight coefficients of fully connected multi-
layer feed-forward neural networks (GA-ANNW) [10].
We used the sigmoid as an activation function.

Weights are recorded sequentially in the chromosome
as a binary code. An example of a chromosome is shown

in fig. 1, where 4 bits correspond to one weight coeffi-
cient. In solving real problems, the number of bits that are
used to encode a single weighting coefficient depends on
the accuracy of the settings and the spread of possible
values of weights.

The effectiveness of GA-ANNW was tested on 14 test
approximation problems and was found to be sufficiently
high [10].

Genetic algorithm for automated design of artifi-
cial neural networks structures (GA-ANNS). During
the design of ANN structure, the number of layers and the
neurons on each layer must be determined and also the
activation function type for each neuron must be estab-
lished. Experts can identify an optimal ANN structure, but
it is a time-consuming procedure. We propose the use of a
genetic algorithm to automatically design the ANN struc-
ture (GA-ANNS) [10].

GA-ANNS uses a binary chromosome, whose exam-
ple is shown in fig. 2. The corresponding neural network
is presented in fig. 3. Hidden layers are coded sequen-
tially. Each neuron is encoded in four bits. For each neu-
ron, we firstly, randomly, with a fixed probability equal to
0.3, decided whether it will be used in the network or not.
If in the network a neuron is not presented, its place in the
chromosome is marked with zeros. Otherwise, it is ran-
domly selected as one of the fifteen activation functions
[11], whose number is written in binary code.

[o110]Joo10 ] 10100011 ]

[ o001 |

N

The first weight

coefficients

Fig. 1. Binary chromosome for ANN weight coefficients tuning

the first layer the second layer
e i
__..-""__ __""‘u.r"'-'_ __-\-"""-
[ooo01 T 1101 JToo11 o111 JooooJo1oo0 [1111] o011 ]
mumber of activation function neuron is not used

Fig. 2. Binary chromosome for GA-ANNS

Fig. 3. Example of the ANN built using GA-ANNS
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For each selected ANN structure GA-ANNW was run
for the tuning of weighting coefficients.

Genetic algorithm with a choice of the most infor-
mative features (GA-ANNinput). Since the efficiency of
the genetic algorithm for ANN depends on the dimension
of the problem in hand, it is reasonable to avoid the use of
uninformative features. The modification of the genetic
algorithm for the choice of the most informative features
during the automated design of ANN (GA-ANNinput)
assumes the use of additional bits in the GA chromo-
somes. These bits determine whether an input is included
in the input layer or not. The coding method can be seen
in fig. 4, and the corresponding chromosomes for the neu-
ral network are shown in fig. 5.

Evolutionary algorithms for automated multicrite-
ria design of ANN (MC-ANNinput) [12]. Solving the
problem of the design of artificial neural networks, it is
often difficult to find a compromise between the accuracy
and simplicity of the solution. We propose to use evolu-
tionary algorithms for this. We use an averaged modelling
error, the ANN neuron number and the input number as

Input is not used

- -

number of activation function

criteria for MC-ANNinput. The encoding of the binary
string follows the same rules as in the previous method.

3. Performance Estimation of Evolutionary
Algorithms for Automated Neural Network Design

The proposed algorithms were tested with the follow

rules:

— the performance for all genetic algorithm settings
was estimated over 100 runs;

— the number of generations is equal to 1000;

— the number of individuals is equal to 500;

— the size of the training sample is equal to 70 % of
the total number of examples, and the test sample size is
equal to 30 %;

— results are presented for the best settings of the
genetic algorithm;

— the maximum size of a network is equal to 5x5;

— error of all runs were averaged.

The effectiveness of the algorithms was estimated
over 14 test problems of approximation from [7] and the
results are presented in tab. 3.

feUron is missing

[ 1 | 0 | 1 | ooo1 | 1201 [ oo21 | 0111 [ oooe [ o100 [ 1111 Joeo11 ]
S R e
e Bl :
layer of input variables The first hidden layer The second hidden layer
Fig. 4. Chromosome in GA-ANNinput
Fig. 5. Corresponding ANN
Table 3

Test results

Algorithm Reliability Generation Average number of neurons
GA-ANNS 0.917[0.315; 1] 15.7[11;29] 3.5
GA-ANNinput 0.896 [0.307; 1] 26.3 [31; 81] 3.4
GA-ANNW 0.543 [0.295; 0.987] 51.6 [42; 84] 25
MultiNSGAII-ANN 0.91510.279; 1] 19.9 [18; 48] 4
MultiSPEA2-ANN 0.874 [0.365; 0.953] 31.8 [34; 67] 4.7
MultiSPEA-ANN 0.832[0.471; 0.921] 29.7 [38; 73] 6
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The modification does not bring significant improve-
ments, since the vector of input variables has a small di-
mension, so all inputs are informative. Therefore, it can
be useful for tasks that are more complex.

The GA with proportional selection, two-point cross-
over and average mutation has achieved the highest accu-
racy. These settings should be used to solve real-world
problems of data analysis.

4. Performance Estimation of Evolutionary
Algorithms for Automated Neural Network Design
on Real World Problems

Three real problems of data analysis [13] were used
for the evaluation of the proposed algorithms: the Iris
classification, Australian and German bank scoring prob-
lems. The parameters of these tasks (the number of inputs,
the sample size, the number of classes and number of ex-
amples in each class) are shown in tab. 4. For solving
these problems algorithms used 1500 generations and 750
individuals. All results were averaged over 100 runs.

The comparison of the implemented algorithms with
other methods was performed for the Iris classification
problem [14] and bank scoring problems [15]. The results

for the Iris classification problem and for bank scoring
problems are shown in tab. 5 and in tab. 6 correspond-
ingly.

As it can be seen from tab. 5, GA-ANNinput did not
improve performance in comparison with GA-ANNS.
The main reason for this is the same as for test problems
(all inputs are sufficiently informative).

It can be seen from tab. 6 that the GA-ANNinput
shows higher efficiency than GA-ANNS and MultiNS-
GAII-ANN. The modified algorithm takes second place
among all the algorithms for the Australian problem, it
loses only for the method specially developed for such
tasks, and is in 6th place for the German problem. That is
a good result for a non-specific for the problem method.

The algorithm uses such important data as a credit his-
tory or house ownership, but could reject less important
data, like family status.

Fig. 6 and 7 show that the structures of the best neural
networks are relatively simple. On average the developed
algorithms used about 7 inputs (from 15) for the Austra-
lian credit problem and approximately 11 inputs (from 24)
for the German credit problem and a network with 9 and
14 neurons, respectively, from the maximum possible 25
neurons.

Table 4

Numerical characteristics of the data analysis problems

Name of the task Number of attributes The sample size Number of classes Separation by class
Iris 4 150 3 Class 1: 50
Class 2: 50
Class 3: 50
Australian Credit Data 15 690 2 Class 1: 290
Class 2: 310
German Credit Data 24 1000 2 Class 1: 700
Class 2: 300
Table 5
The results for Iris classification problem
The ES-ANN CRO- EP-ANN GSO- GA- PSO-ANN GA-ANN | MGNN Multi
method ANN ANN ANNS input NSGA
name II-ANN
Error 0.0066 0.0067 0.0116 0.0142 0.0201 0.0202 0.0231 0.0305 0.0312
Table 6
Performance comparison (classification errors)
The method name Australian Credit Approval German Credit Data
2SGP 0.0863 0.1985
GA-ANNinput 0.087 0.232
GA-ANNS 0.091 0.241
C4.5 0.1014 0.2227
MLP 0.1014 0.2382
MultiNSGAII-ANN 0.102 0.24
Fuzzy classifier 0.109 0.206
GP 0.1111 0.2166
k-NN 0.1256 0.2849
LR 0.1304 0.2163
Bayesian approach 0.153 0.321
Bagging 0.153 0.316
Boosting 0.24 0.3
CART 0.285 0.2435
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Fig. 7. The best found ANN for the German credit problem (GA-ANNinput)

For two bank scoring tasks statistical analysis of raw
data was performed. It was found that these problems
have a weak relationship between some input variables
and output variables (class). Additionally, input attributes
are divided into groups whose members are strongly cor-
related with each other and weakly correlated with mem-
bers of other groups. Further analysis showed that the
ANN obtained by the GA-ANNinput or MultiNSGA-
ANN, as arule:

— not used inputs that are weakly correlated with the
output variable;

— select only significant inputs, one from each group
and discard the rest.

At the same time, for problems in which all inputs are
significant, GA-ANNinput typically includes input vari-
ables without losing information. We can conclude that
the proposed tool, which allows not only the building of
sufficiently effective neural network classifiers, but at the
same time the establishment of the most significant fea-
tures, is useful for further investigation.

Conclusion. In this paper, we tested a genetic algo-
rithm for the tuning of weighting coefficients and ANN
structure design for approximation problems. It is shown
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that neural networks with a structure that is configured by
using a genetic algorithm solve the problem of approxi-
mation on a good level compared to the classical methods.

A modified genetic algorithm with ANN structure de-
sign with a selection of the most informative features was
developed and implemented. The modified algorithm for
test approximation problems did not produce a significant
improvement in comparison with the genetic algorithm
without feature selection. This is due to the fact that the
test problems input variables vector has a small dimen-
sion, and consequently the exclusion of any input is im-
possible and leads to a decrease in the solution accuracy.

However, for solving large-scale problems, the modi-
fied algorithm has shown higher accuracy, and taken
fewer computational resources. The modified algorithm
with determination of the most informative features to-
gether with the automated design of neural network clas-
sifiers includes as the input only variables of the original
problem that are weakly correlated with one another.

In the future, we plan to develop a genetic algorithm
for automated design of fuzzy logic systems with the si-
multaneous selection of the most informative features.
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