Mamemamuxka, mexanuxa, ungopmamuxa

UDC 519.6

Vestnik SibGAU
Vol. 16, No. 1, P. 113-118

HYBRIDIZATION OF LOCAL SEARCH WITH SELF-CONFIGURING GENETIC
PROGRAMMING ALGORITHM FOR AUTOMATED FUZZY CLASSIFIER DESIGN

M. E. Semenkina

Siberian State Aerospace University named after academician M. F. Reshetnev
31, Krasnoyarsky Rabochy Av., Krasnoyarsk, 660014, Russian Federation
E-mail: semenkina88@mail.ru

A fuzzy classifier is one of the intelligent information technologies allowing the generation of a fuzzy rule base suit-
able for interpretation by human experts. For a fuzzy classifier automated design the hybrid self-configuring evolution-
ary algorithm is proposed. The self-configuring genetic programming algorithm is suggested for the choice of effective
fuzzy rule bases. For the tuning of linguistic variables the self-configuring genetic algorithm is used. A hybridization of
self-configuring genetic programming algorithms (SelfCGPs) with a local search in the space of trees is fulfilled to im-
prove their performance for fuzzy rule bases automated design. The local search is implemented with two neighborhood
systems (1-level and 2-level neighborhoods), three strategies of a tree scanning (“full ”, “incomplete” and “truncated”)
and two ways of a movement between adjacent trees (transition by the first improvement and the steepest descent). The
Lamarckian local search is applied on each generation to ten percent of best individuals. The performance of all devel-
oped memetic algorithms is estimated on a representative set of test problems of the functions approximation as well as
on real-world classification problems. It is shown that developed memetic algorithm requires comparable amount of
computational efforts but outperforms the original SelfCGP for the fuzzy rule bases automated design. The best variant
of the local search always uses the steepest descent and full scanning for fuzzy classifier design. Additional advantage
of the approach proposed is a possibility of the automated features selection. The numerical experiment results show
the competitiveness of the approach proposed.

Keywords: genetic programming algorithm, self-configuration, fuzzy classifier, local search on discrete structures.

Bectauk Cubl’'AY
T.16,Ne 1. C. 113-118

I'MbPUAN3BAIUSA JTOKAJIBHOT'O CITYCKA C CAMOKOH®UTI'YPUPYEMBIM AJITOPUTMOM
IF'EHETHYECKOI'O IPOI'PAMMMUPOBAHUA JJIA ABTOMATHUYECKOI'O TEHEPUPOBAHUA
HEYETKHUX KJIACCUDPUKATOPOB

M. E. Cemenknna

Cubupckuii rocy1apCTBEHHBIA a9POKOCMUYECKUI YHUBEPCUTET UMEHH akajiemuka M. @. Pemernesa
Poccuiickas @enepanus, 660014, r. KpacHosipck, npoctt. uM. ra3. «KpacHosipckuit pabounii», 31
E-mail: semenkina88@mail.ru

Heuemxkue xnaccughuxamopvl A61510Mcst OOHUM U3 8UOOE UHMELICKINYALbHbIX UHMDOPMAYUOHHBIX MEXHON02UL, UC-
NOL3YIOWUX DA3bL HEHeMKUX NPABUTL, KOMOPbIe MO2Ym Oblmb J1e2KO UHMePNPEemuposansl yeiogekom-skenepmon. ITpu
ABMOMAMULECKOM CO30AHUU HEYeMKUX KIACCUDUKAMOPO8 8 OaHHOU pabome UCHOb3YIOMCA CAMOKOHpUSYpUPYembill
ANOPUMM 2EHEMUUECKO20 NPOSPAMMUPOSAHUSL OISl 2EHEPUPOBAHUsL OA3 NPABUTL U CAMOKOHDUSYPUPYEMbIll 2eHemute-
CKULl aneopumm 015l HACMPOUKU TUHSGUCIMUYECKUX NepeMeHHbIX. Paccmampugaiomes camokongpuypupyemvitl anco-
PUMM 2EHEMUUECKO20 NPOSPAMMUPOSAHUSL OIS ABMOMAMUYECKO20 2eHEPUPOSAHUsL Oa3 NPAGUL OJisl HeUeMKUX KIACCU-
PuKamopos u TOKANbHBLI CHYCK N0 0ePesbiM, NPeocmasisiowum coboll 6azel npasui. s 10KaIbHO20 CnycKa no oe-
pesy npedCcmasieHo 06a cnocoba nepexoda medxicdy oepesbimu (nepexoo no Nepeomy VAVHUIeHUI) U HAUCKOPetull
cnyck), dge cucmemvl okpecmuocmeti (1-coceOnsiss u 2-coceOusiss OKpeCMHOCMUL) 1 Mpu cmpamezuil RPOCMOMpPa IMux
cucmem OKpecmHocmell («NOJHbILY, «HENOJHbILY U «YCeUeHHbIU» NpocMompwl). B xode pabomvr Obiio GbINOAHEHO
cpasHeHue 3hpexmueHocmu 8cex 6aPUAHMOE GbINONHEHUs JOKANbHO20 CHYCKa no depesy. Dpghexmusnocms cex
NPEONIONCEHHBIX AI2OPUMMOE OYCHUBALACH HA PENPE3CHMAMUBHOM MHONCECTNEE MEeCMOBbIX 3A0ad U HA O8YX PealbHbIX
npakmuueckux zadavax kiaccugukayuu. Ilo pesyriomamam mecmuposanusi MONCHO COCLAMb 8bl800, YMO JOKALbHbILL
CHYCK, NPOU3600AWULL NOJHOU NPOCMOMP 2-COCOCHEel CUcCmembl OKPeCmHOCIEll, NPOOEMOHCIMPUPOSAL IYHULYIO I¢)-
PeKmusHOCb U CYWEeCMEEHHO NOBBICUTL IPPHEKMUBHOCb CAMOKOHDUSYPUPYEMO20 ANOPUMMA 2EHEMUYECKO20 NPO-
2PAMMUPOBAHUS ONSL ABMOMAMUYECKO20 2CHEPUPOBAHUS HEUEMKUX KIACCUPUKAmMOpos. [lannbiil 2UOPUOHbLIL ai2opumm
noumu 8ce20a nPegoCcxooum Ayuuutl O KOHKPEMHOU 3a0auu 8apuanm aji2opumma 2eHemuiecko2o npocpammuposa-
HUSL, 4MO N0360Jiem NOIHOCHbIO OMKA3AMbC Om 8bloopa e2o0 Hauboxee 3¢hpexmuenozo eapuanma nacmpoex. Ilpu

113

Becmuux Cubl’'AY. Tom 16, Ne]

peuenuu peaibHbix 3a0ay AHAU3A OAHHLIX 2UOPUOHBILL ANOPUMM NPOOEMOHCIMPUPOBAL JYYWUL pe3yabmam cpeou

6CeX pACCMOMPEHHbLX AlbMepHAmue.

Kniouegvie cnoea: anzopumm eenemuueckozo npozpammupo8anus, CAMOKOHPU2Yypayus, Heuemrull Kiaccu@uramop,

JIOKANBHBIIL NOUCK HA OUCKPEMHBIX CIMPYKIMYPAX.

Introduction. A fuzzy classifier [1] is one of the intel-
ligent information technologies allowing the generation of
a fuzzy rule base suitable for interpretation by human
experts. It is an appropriate method for solving
classification problems, which are a well-known
application of natural computing algorithms.

However, the process of fuzzy classifier design and
adjustment is rather complex even for experts in fuzzy
systems. For automated implementation of the fuzzy clas-
sifier it is necessary to consider its design as an optimiza-
tion problem. This problem is very complicated for stan-
dard optimization tools, which makes evolutionary algo-
rithms rather popular in this field [2; 3]. A genetic pro-
gramming algorithm (GP) can be used for the automated
design of the fuzzy classifier rule base because of the abil-
ity of the GP to work with variable length chromosomes.
The use of a GP can simplify the implementation of the
Pittsburg [3] method and, in this case, there is no neces-
sity to implement the Michigan [2] method for reducing
the dimension of the search space.

It is well known that a GP requires a lot of effort in its
adoption for any problem in hand. That is why before
suggesting GP usage to end users, e. g., medicine or fi-
nance specialists for application in the development of
classification tools, we must take care to avoid those main
issues which are problems even for evolutionary compu-
tation experts. We have to suggest a way to avoid issues
in the adjustment of the algorithm and the self-
configuration for GP (Self-CGP) [4] could be a solution
here.

It would be a good idea to use a local search for trees
representing a fussy classifier rule base to improve the
Self-CGP effectiveness. However, although the local
search is often used for real valued and discrete optimiza-
tion problems nevertheless it is not commonplace to use it
for such a data structure as a tree. In this paper, we con-
sider a new way for the local search on trees representing
fuzzy rule bases.

Having conducted numerical experiments, we have
found that the proposed approach positively impacts on
the performance of the algorithm and deserves special
attention and further investigation.

The rest of the paper is organized as follows. Section
1 explains the idea of self-configuring evolutionary algo-
rithms. Section 2 describes the proposed method of fuzzy
classifier automated design. Section 3 describes the idea
of a local search for trees. Section 4 shows test results for
the method proposed. Section 5 presents the results of the
numerical experiments comparing the performance of the
proposed approach and alternatives in solving real-world
problems. In the Conclusion we discuss the results.

Self-configuring evolutionary algorithm. The self-
configuring evolutionary algorithms (SelfCEA), which do
not require for their adjustment any efforts of the end user
as the method is adjusted automatically, use a dynamic
adaptation on the population level [5] and centralized

114

control techniques [6] for parameter settings with some
differences from the usual approaches. Instead of tuning
real parameters, variants of settings are used, namely
types of selection (fitness proportional, rank-based, and
tournament-based with three tournament sizes), crossover
(one-point, two-point, as well as equiprobable, fitness
proportional, rank-based, and tournament-based uniform
crossovers [7]), population control and level of mutation
(medium, low, high for all mutation types). Each of these
has its own initial probability distribution, which is
changed as the algorithm is executed [4].

This self-configuring technique can be used both for
genetic algorithms (SelfCGA) and genetic programming
(SelfCGP). In [8] the SelfCGA the performance was es-
timated on 14 test problems from [9]. As a commonly
accepted benchmark for GP algorithms is still an “open
issue” [10], the symbolic regression problem with 17 test
functions borrowed from [9] was used in [7] for testing
the self-configuring genetic programming algorithm. The
statistical significance was estimated with ANOVA.

Analysing the results of SelfCGA [8] and SelfCGP [7]
performance evaluation, we observed that the self-
configuring evolutionary algorithms demonstrate better
reliability than the average reliability of the corresponding
single best algorithm. They can be used instead of con-
ventional EA in complex problem solving.

Self-Configuring Evolutionary Algorithm for
Automated Fuzzy Classifier Design. We have to de-
scribe our method of modelling and optimizing a rule
base for a fuzzy logic system with GP and linguistic vari-
ables adjusted with a GA.

Usually, a GP algorithm works with a tree representa-
tion of solutions, defined by functional and terminal sets,
and exploits specific solution transformation operators
(such as selection, crossover, or mutation) until the termi-
nation condition is met [11]. The terminal set of our GP
includes the terms of the output variable, i. e. class mark-
ers. The functional set includes a specific operation for
dividing an input variables vector into sub-vectors or, in
other words, for the separation of the examples set into
parts according to input variable values. It might be that
our GP algorithm will ignore some input variables and
will not include them in the resulting tree, i. e., a high
performance rules base that does not use all problem in-
puts can be designed. This feature of our approach allows
the use of our GP for the selection of the most informative
combination of problem inputs.

The tuning of linguistic variables is executed to evalu-
ate the fuzzy system fitness that depends on its perform-
ance when solving the problem in hand, e. g., the number
of misclassified instances. A linguistic variable consists of
a set of terms or linguistic variable values representing
some fuzzy concepts. Each of the terms is defined by a
membership function. The tuning of linguistic variables
consists in the optimization of membership function pa-
rameters simultaneously for all the terms of linguistic

Mamemamuxka, mexanuxa, ungopmamuxa

variables involved in problem solving. In this paper, we
propose adjusting linguistic variables with the self-
configuring genetic algorithm (SelfCGA) combined with
the conjugate gradient method. We use here membership
functions with a Gaussian shape. For the coding of mem-
bership function parameters, the mean value of the Gaus-
sian function and its standard deviation are written con-
secutively for each term in the chromosome. For auto-
matic control of the number of terms the possibility of
ignoring a term is provided: all bits of the ignored term
are set as 0 with the probability equal to 1/3.

The efficiency of the proposed approach has been
tested on a representative set of known problems. The test
results showed that the fuzzy classifiers designed with the
suggested approach (SelfCGP-FL) [12] have a small
number of rules in comparison with the full rule base.
These fuzzy systems usually have a small enough classifi-
cation error. This is why we can recommend the devel-
oped approach for solving real world problems.

Local search for discrete structures. We can formu-
late some general rules of neighbourhood system con-
struction for trees that can be symbolic expressions, neu-
ral network models or fuzzy logic:

1. The tree is neighbouring to the original one if one
element of the terminal set was replaced with another
element.

2. The tree is neighbouring to the original one if one
binary function from the functional set was replaced with
another binary function.

3. The tree is neighbouring to the original one if one
unary function from the functional set was replaced with
another unary function.

4. Changes in the tree associated with functional ele-
ments generate larger changes in the phenotype than
changes in the elements of the terminal set.

Trees with modified leaves (terminal set elements)
will be called 1-level neighbours and trees with a modi-
fied functional element will be called 2-level neighbours.
In our hybridization of the local search with self-
configuring genetic programming for fuzzy logic classi-
fier design, trees with a randomly replaced class type will
belong to the 1-level neighbourhood and trees with a ran-
domly replaced feature for vector dividing on sub-vectors
will belong to the 2-level neighbourhood.

The search in such neighbourhoods for the locally
best-found solution should improve the efficiency of the
problem solving without a significant increase in compu-
tational efforts. However, the effectiveness of the local
search depends not only on the choice of neighbourhood
but also on the method of search.

There are several ways of movement between ad-
jacent trees: transition by the first improvement and
steepest descent that mean an exhaustive search of
neighbouring trees. In this paper, we will use both ways
of movement and both systems of neighbourhood. In the
first case, the 2-level neighbourhood will be used at the
beginning of the algorithm execution and the 1-level
neighbourhood will be used on the later stages. We call
this method of search a “full” local search. In the second
case, only the 1-level neighbourhood will be used, this
variant is named an “incomplete” local search. Changes
in tree nodes that are closer to the top of the tree have a

115

more significant impact on the result obtained. Therefore,
when we use the 2-level neighbourhood, nodes which are
closer to the top will be changed before others. This
means that the tree will be considered from in the top-
down way. Furthermore a “truncated” local search will be
considered that means viewing only n randomly chosen
nodes in the tree.

The local search procedure on the tree structure
can be described as follow:

1. All tree nodes receive their numbers and order in
which they will be considered: ki, &y, ..., k,, where n is
equal to the number of nodes which must be considered,
k; is the number of the i-th node. The order of considered
nodes depends on the chosen strategy of neighbourhood
searching (“full”’, “incomplete” or “truncated” local
searches). Set 7 to be equal to 1.

2. The new value for the k;-th node will be randomly
chosen, which has to belong to the corresponding
neighbourhood (the 1-level neighbourhood for leaves and
the 2-level neighbourhood in other cases).

3. If i is not equal to n then go to the step 3.1, other-
wise go to step 3.2.

3.1. If the fitness value for the modified tree is better
than for the original tree then, in the case of transition by
the first improvement, we save the modified tree, set up
i =i+ 1and go to step 2, and, in the case of steepest de-
scent, we save the fitness value and the modified tree and
continue searching the original tree with i =i + 1 (go to
step 2). Otherwise, if there is no fitness improvement, we
continue searching the original tree with i =i + 1 (go to
step 2).

3.2. In the case of transition by the first improvement,
the local search procedure is finished. In the case of
steepest descent, we substitute the original tree by the best
one found and with this new tree go to step 1. If the new
tree is equal to the original one than the local search pro-
cedure is finished.

During implementation and testing of the consid-
ered local search procedures the number of additional
fitness function estimations must be taken into account.
This number significantly depends on the way of the
movement and the strategy for searching the neighbour-
hood. In addition, the speed of the hybrid algorithm de-
pends on the selection of individuals to be improved by
the local search (only the best individual or p % best in
each generation, or once every ¢ generations).

Experiment results for hybridization of local
search with self-configuring genetic programming al-
gorithm for automated fuzzy classifier design. For the
test of the proposed hybrid algorithm, the same test func-
tion set was used as for the self-configuring genetic pro-
gramming algorithm for automated fuzzy classifier gen-
eration. Since local search algorithms precisely identify
the optimum position, the comparison of efficiency
should be done with the criterion of reliability. The reli-
ability of the algorithm is the ratio of the number of suc-
cessful algorithm runs to the total number of algorithm
runs. The algorithm run is considered as successful if the
desired accuracy is achieved. Each algorithm received the
same computing resources to find a solution and was
launched 100 times for each test problem. The statistical
significance was estimated with ANOVA. During testing

Becmuux Cubl’'AY. Tom 16, Ne]

the performance evaluation was performed for the self-
configuring genetic programming algorithm hybridized
with three types of local search (“full”, “incomplete” and
“truncated”) and two strategies for movement (“first
improvement” and “steepest descent”) that can be
designated as “LS-limp.+SelfCGP-FL-f’, “LS-
limp.+SelfCGP-FL-inc”, “LS-1imp.+SelfCGP-FL-t”,
“LS-SD+SelfCGP-FL-f”, “LS-SD+SelfCGP-FL-inc” and
“LS-SD+SelfCGP-FL-t” respectively.
The results obtained are presented in tab. 1.

Table 1
Algorithm reliability on test problems

Algorithm Reliability Average number
of fitness function
evaluation
SelfCGP+FL 0.64 [4600, 21100]
[0.33,0.96]
LS-1imp+SelfCGP-FL-f 0.68 [4340, 20500]
[0.37,0.97]
LS-1imp+SelfCGP-FL-inc | 0.64 [4150, 19800]
[0.34, 0.96]
LS-1imp+SelfCGP-FL-t 0.65 [4210, 20050]
[0.35,0.97]
LS-SD+SelfCGP-FL-f 0.72 [4540, 21000]
[0.43, 0.99]
LS-SD+SelfCGP-FL-inc 0.66 [4380, 20650]
[0.38, 0.96]
LS-SD+SelfCGP-FL-t 0.68 [4500, 20800]
[0.39, 0.96]

The follow criteria for evaluating the algorithms were
selected:

1. Reliabilities that were averaged over all test prob-
lems and the spread of their values in brackets (“Reliabil-
ity”).

2. Information on the number of resources required to
find the first suitable solutions in terms of accuracy that
were averaged over all tasks and in brackets the spread on
all tasks (“Average number of fitness function evalua-
tion”).

It is easy to see that the local search variant with a
greater neighbourhood size and more detailed search
though it has better reliability and a worse number of fit-
ness function evaluations. The proposed local search algo-
rithms increased the efficiency of the previously consid-
ered self-configuring genetic programming algorithms.
With the joint application of self-configuring genetic pro-
gramming and local search algorithms the performance is
more often greater than of the best setting variant of ge-
netic programming algorithms.

Numerical Experiments with Real World
Problems. The developed approach was applied to two
credit scoring problems from the UCI repository [13]
often used to compare the accuracy with various
classification models:

Credit (Australia-1) (14 attributes, 2 classes, 307 ex-
amples of creditworthy customers and 383 examples of
non-creditworthy customers);

Credit (Germany) (20 attributes, 2 classes, 700 records
of creditworthy customers and 300 records of non-
creditworthy customers).

116

Both classification problems were solved with fuzzy
classifiers designed by hybrid SelfCGP (SelfCGP-FL)
hybridized with a different variant of the local search
(LS). This technique was trained on 70 % of the instances
from the data base and validated on the remaining 30 %
of examples. The results of the validations (the portion of
correctly classified instances from the test set) averaged
for 40 independent runs are given in tab. 2 below. The
statistical significance of all our experiments was esti-
mated with ANOVA.

We first compared the fuzzy classifier performance
with ANN-based [14; 15] and symbolic regression based
[7] classifiers automatically designed by SelfCGP
(SelfCGP+ANN and SelfCGP+SRF). As we have ob-
served, the algorithm proposed in this paper demonstrates
high performance on both classification tasks.

We then conducted the comparison of the proposed
algorithms with alternative classification techniques. The
results for the alternative approaches have been taken
from scientific literature. In [16] the performance evalua-
tion results for these two data sets are given for the au-
thors' two-stage genetic programming algorithm (2SGP)
specially designed for bank scoring as well as for the fol-
lowing approaches taken from other papers: conventional
genetic programming (GP), multilayered perceptron
(MLP), classification and regression tree (CART), C4.5
decision trees, k nearest neighbors (k&-NN), and linear re-
gression (LR). We have taken additional material for
comparison from [17] which includes evaluation data for
the authors' automatically designed fuzzy rule based clas-
sifier as well as for other approaches found in the litera-
ture: the Bayesian approach, boosting, bagging, the ran-
dom subspace method (RSM), and cooperative coevolu-
tion ensemble learning (CCEL). The results obtained are
given in tab. 2. As can be seen from tab. 2, the proposed
algorithm demonstrates the best performance for both
problems.

It is necessary to stress that fuzzy classifiers designed
by SelfCGP hybridized with local search give additionally
human interpreted linguistic rules which is not the case
for the majority of other algorithms in tab. 2. Designed
rule bases usually contain 10-15 rules which do not in-
clude all given inputs, i. e. are much easier to be inter-
preted by humans.

Table 2
The comparison of classification algorithms

Classifier Australian credit German credit
LS+SelfCGP-FL 0.9041 0.8021
2SGP 0.9027 0.8015
SelfCGP-FL 0.9022 0.7974
SelfCGP+ANN 0.9022 0.7954
SelfCGP+SRF 0.9022 0.7950
Fuzzy 0.8910 0.7940
C4.5 0.8986 0.7773
CART 0.8986 0.7618
k-NN 0.8744 0.7565
LR 0.8696 0.7837
RSM 0.8660 0.7460
Bagging 0.8470 0.6840
Bayesian 0.8470 0.6790
Boosting 0.7600 0.7000
CCEL 0.7150 0.7151

Mamemamuxka, mexanuxa, ungopmamuxa

Analysis of the data sets shows that input variables
can be divided into some groups so that the inputs of one
group are highly correlated to each other but the correla-
tion between inputs of different groups is weak. There are
also inputs weakly correlated with the output. A fuzzy
classifier designed with the suggested hybrid SelfCGP
doesn’t usually include inputs of the last kind. Moreover,
it usually includes members of every group of inputs but
only one input from each, i. e. it does not include highly
correlated inputs in the rule base. This allows the algo-
rithm to create relatively small rule bases with rather sim-
ple rules.

Conclusion. The self-configuring genetic program-
ming algorithm and the local search were hybridized to
design fuzzy classifiers with high efficiency. A special
way of representing the solution provides the opportunity
to create relatively small rule bases with rather simple
rules. The quality of classification is high as well, which
was demonstrated through the solving of two real world
classification problems from the area of bank scoring.

The results obtained allow us to conclude that the de-
veloped approach is workable and useful and should be
further investigated and expanded.

Acknowledgements. This research is supported by
the Ministry of Education and Science of the Russian
Federation within the State assignment Ne 2.1889.2014/K.
The author expresses his gratitude to Mr. Ashley Whit-
field for his efforts to improve the text of this article.

BbaaromapuocTu. UccnenoBaHus MOAIEPKUBAIOTCS
MuHuctepcTBOM 00pa3oBaHusi U Hayku Poccuiickoit De-
Jiepaluy B paMKax rocyJapcCTBEHHOTO MPOEKTHOIo 3ajia-
Hust Ne 2.1889.2014/K. ABTOp BBIpa)kaeT MNPU3HATEIIb-
HOCTh Duud YUTQUIIBIY 32 IOMOIb B COBEPIICHCTBOBA-
HUH TEKCTa CTaThH.

References

1. Ishibuchi H., Nakashima T., Murata T. Performance
Evaluation of Fuzzy Classifier Systems for Multidimen-
sional Pattern Classification Problems. /[EEE Trans. on
Systems, Man, and Cybernetics, 1999, vol. 29, p. 601-618.

2. Cordén O., Herrera F., Hoffmann F. and Magdalena L.
Genetic Fuzzy Systems: Evolutionary Tuning and Learn-
ing of Fuzzy Knowledge Bases. Singapore: World Scien-
tific. 2001.

3. Herrera F. Genetic Fuzzy Systems: Taxonomy, Cur-
rent Research Trends and Prospects. Evol. Intel. 2008,
vol. 1, no. 1, p. 27-46.

4. Semenkina M. E. [Effectiveness investigation of
self-adaptive evolutionary algorithms for data mining
information technology design]. Iskusstvennyy intellekt i
prinyatiye resheniy. 2013, no. 1, p. 13-23 (In Russ.).

5. Meyer-Nieberg S., Beyer H.-G. Self-Adaptation in
Evolutionary Algorithms. Lobo F. G., Lima C. F.
Michalewicz Z. (eds.) Parameter Setting in Evolutionary
Algorithm, 2007, vol. 54, p. 47-75.

6. Gomez J. Self Adaptation of Operator Rates in Evo-
lutionary Algorithms. Deb, K. et al. (eds.) GECCO 2004.
LNCS, 2004, vol. 3102, p. 1162-1173.

7. Semenkin E., Semenkina M. Self-Configuring Ge-
netic Programming Algorithm with Modified Uniform

Crossover Operator. Proceedings of the IEEE Congress
on Evolutionary Computation (IEEE CEC), 2012,
p- 1918-1923.

8. Semenkin E. S., Semenkina M. E. Self-Configuring
Genetic Algorithm with Modified Uniform Crossover
Operator. Advances in Swarm Intelligence, Lecture Notes
in Computer Science, vol. 7331. Springer-Verlag, Berlin
Heidelberg, 2012, p. 414-421.

9. Finck S. et al. Real-Parameter Black-Box Optimiza-
tion Benchmarking. Presentation of the noiseless func-
tions. Technical Report Researh Center PPE. 2009.

10. O’Neill M., Vanneschi L., Gustafson S., Banzhaf
W. Open Issues in Genetic Programming. Genetic Pro-
gramming and Evolvable Machines 11, 2010, p. 339-363.

11. Poli R., Langdon W.B., McPhee N.F. A Field

Guide to Genetic Programming. Published via
http://lulu.com. 2008. Available at: http://www.gp-field-
guide.org.uk.

12. Semenkina M., Semenkin E. Hybrid Self-
configuring Evolutionary Algorithm for Automated De-
sign of Fuzzy Classifier. Advances in Swarm Intelligence.
Lecture Notes in Computer Science, Springer-Verlag,
Berlin, Hedelberg, 2014, vol. 8791, part 1, p. 310-317.

13. 13. Frank A., Asuncion A. UCI Machine Learning
Repository (2010) Irvine, CA: University of California,
School of Information and Computer Science. Available
at: http://archive.ics.uci.edu/ml.

14. Semenkin E., Semenkina M. Artificial Neural
Networks Design with Self-Configuring Genetic Pro-
gramming Algorithm. Filipic B., Silc J. (Eds.) Bio-
inspired Optimization Methods and their Applications:
Proceedings of the Fifth International conference BIOMA
2012, 2012, p. 291-300.

15. Semenkin E. S., Semenkina M. E., Panfilov I. A.
Neural Network Ensembles Design with Self-Configuring
Genetic Programming Algorithm for Solving Computer
Security Problems. Computational Intelligence in Security
for Information Systems, Advances in Intelligent Systems
and Computing. Springer-Verlag, Berlin Heidelberg,
2012, vol. 189, p. 25-32.

16. Huang J.-J., Tzeng G.-H., Ong Ch.-Sh. Two-Stage
Genetic Programming (2SGP) for the Credit Scoring
Model. Applied Mathematics and Computation, 2006,
vol. 174, p. 1039-1053.

17. Sergienko R., Semenkin E., Bukhtoyarov V.
Michigan and Pittsburgh Methods Combining for Fuzzy
Classifier Generating with Coevolutionary Algorithm for
Strategy Adaptation. I[EEE Congress on Evolutionary
Computation, IEEE Press, New Orleans, LA, 2011.

Bub6auorpadguyeckue cCbLIKH

1. Ishibuchi H., Nakashima T., Murata T. Performance
Evaluation of Fuzzy Classifier Systems for Multidimen-
sional Pattern Classification Problems // Proc. of IEEE
Trans. on Systems, Man, and Cybernetics. 1999. T. 29.
P. 601-618.

2. Genetic Fuzzy Systems: Evolutionary Tuning
and Learning of Fuzzy Knowledge Bases / O. Cordon
[et al.]. Singapore : World Scientific. 2001.

3. Herrera F. Genetic Fuzzy Systems: Taxonomy,
Current Research Trends and Prospects // Evol. Intel.
2008. Vol. 1, no. 1. P. 27-46.

117

Becmuux Cubl’'AY. Tom 16, Ne]

4. Cemenknda M. E. CamoamanTHBHBIE DBOIIOIMOH-
HbIE AJITOPUTMBI IPOSKTUPOBAHUS HH(POPMALHOHHBIX
TEXHOJIOTUH HMHTEUICKTYaJIbHOTO aHajiu3a JaHHbIX //
HckyccTBeHHBIN WHTEIUIEKT U NpUHATHE perneHuit. 2013.
Ne 1. C. 13-23.

5. Meyer-Nieberg S., Beyer H.-G. Self-Adaptation in
Evolutionary Algorithms // Parameter Setting in Evolu-
tionary Algorithm / F. G. Lobo, C. F. Lima, Z. Michale-
wicz (eds.). 2007. Vol. 54. Pp. 47-75.

6. Gomez J. Self Adaptation of Operator Rates in
Evolutionary Algorithms // Proc. of GECCO 2004.
LNCS. 2004. Vol. 3102. Pp. 1162-1173.

7. Semenkin E., Semenkina M. Self-Configuring Ge-
netic Programming Algorithm with Modified Uniform
Crossover Operator // Proceedings of the IEEE Congress
on Evolutionary Computation (IEEE CEC). 2012.
Pp. 1918-1923.

8. Semenkin E. S., Semenkina M. E. Self-Configuring
Genetic Algorithm with Modified Uniform Crossover
Operator // Advances in Swarm Intelligence, Lecture
Notes in Computer Science 7331. Berlin Heidelberg :
Springer-Verlag, 2012. Pp. 414-421.

9. Real-Parameter Black-Box Optimization Bench-
marking 2009. Presentation of the noiseless functions /
S. Finck [et al.] // Technical Report Researh Center PPE.
20009.

10. Open Issues in Genetic Programming /
M. O’Neill [et al.] // Genetic Programming and Evolvable
Machines. 2010. Ne 11. Pp. 339-363.

11. Poli R., Langdon W. B., McPhee N. F. A Field
Guide to Genetic Programming [DnexTpoHHsblii pecypc] //
Published via http://lulu.com. 2008. (With contributions
by J. R. Koza). URL: http://www.gp-field-guide.org.uk.

12. Semenkina M., Semenkin E. Hybrid Self-
configuring Evolutionary Algorithm for Automated De-
sign of Fuzzy Classifier / Advances in Swarm Intelli-
gence. Lecture Notes in Computer Science. 2014.
Vol. 8791, Part 1. Pp. 310-317.

13. Frank A., Asuncion A. UCI Machine Learning
Repository [dnekrpornsiii pecype]. Irvine, CA: Univer-
sity of California, School of Information and Computer
Science, 2010. URL: http://archive.ics.uci.edu/ml.

14. Semenkin E., Semenkina M. Artificial Neural
Networks Design with Self-Configuring Genetic Pro-
gramming Algorithm // Bio-inspired Optimization Meth-
ods and their Applications : Proceedings of the Fifth
Intern. Conf. BIOMA 2012 / B. Filipic, J. Silc (Eds.).
2012. Pp. 291-300.

15. Semenkin E. S., Semenkina M. E., Panfilov 1. A.
Neural Network Ensembles Design with Self-Configuring
Genetic Programming Algorithm for Solving Computer
Security Problems // Computational Intelligence in Secu-
rity for Information Systems, Advances in Intelligent Sys-
tems and Computing 189. Berlin Heidelberg : Springer-
Verlag, 2012. Pp. 25-32.

16. Huang J.-J., Tzeng G.-H., Ong Ch.-Sh. Two-Stage
Genetic Programming (2SGP) for the Credit Scoring
Model // Applied Mathematics and Computation. 2006.
Ne 174. Pp. 1039-1053.

17. Sergienko R., Semenkin E., Bukhtoyarov V.
Michigan and Pittsburgh Methods Combining for Fuzzy
Classifier Generating with Coevolutionary Algorithm for
Strategy Adaptation // Proc. of IEEE Congress on Evolu-
tionary Computation. New Orleans, LA : IEEE Press,
2011.

© Semenkina M. E., 2015

