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A fuzzy classifier is one of the intelligent information technologies allowing the generation of a fuzzy rule base suit-

able for interpretation by human experts. For a fuzzy classifier automated design the hybrid self-configuring evolution-
ary algorithm is proposed. The self-configuring genetic programming algorithm is suggested for the choice of effective 
fuzzy rule bases. For the tuning of linguistic variables the self-configuring genetic algorithm is used. A hybridization of 
self-configuring genetic programming algorithms (SelfCGPs) with a local search in the space of trees is fulfilled to im-
prove their performance for fuzzy rule bases automated design. The local search is implemented with two neighborhood 
systems (1-level and 2-level neighborhoods), three strategies of a tree scanning (“full”, “incomplete” and “truncated”) 
and two ways of a movement between adjacent trees (transition by the first improvement and the steepest descent). The 
Lamarckian local search is applied on each generation to ten percent of best individuals. The performance of all devel-
oped memetic algorithms is estimated on a representative set of test problems of the functions approximation as well as 
on real-world classification problems. It is shown that developed memetic algorithm requires comparable amount of 
computational efforts but outperforms the original SelfCGP for the fuzzy rule bases automated design. The best variant 
of the local search always uses the steepest descent and full scanning for fuzzy classifier design. Additional advantage 
of the approach proposed is a possibility of the automated features selection. The numerical experiment results show 
the competitiveness of the approach proposed. 
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Нечеткие классификаторы являются одним из видов интеллектуальных информационных технологий, ис-

пользующих базы нечетких правил, которые могут быть легко интерпретированы человеком-экспертом. При 
автоматическом создании нечетких классификаторов в данной работе используются самоконфигурируемый 
алгоритм генетического программирования для генерирования баз правил и самоконфигурируемый генетиче-
ский алгоритм для настройки лингвистических переменных. Рассматриваются самоконфигурируемый алго-
ритм генетического программирования для автоматического генерирования баз правил для нечетких класси-
фикаторов и локальный спуск по деревьям, представляющим собой базы правил. Для локального спуска по де-
реву представлено два способа перехода между деревьями (переход по первому улучшению и наискорейший 
спуск), две системы окрестностей (1-соседняя и 2-соседняя окрестности) и три стратегии просмотра этих 
систем окрестностей («полный», «неполный» и «усеченный» просмотры). В ходе работы было выполнено 
сравнение эффективности всех вариантов выполнения локального спуска по дереву. Эффективность всех 
предложенных алгоритмов оценивалась на репрезентативном множестве тестовых задач и на двух реальных 
практических задачах классификации. По результатам тестирования можно сделать вывод, что локальный 
спуск, производящий полной просмотр 2-сосденей системы окрестностей, продемонстрировал лучшую эф-
фективность и существенно повысил эффективность самоконфигурируемого алгоритма генетического про-
граммирования для автоматического генерирования нечетких классификаторов. Данный гибридный алгоритм 
почти всегда превосходит лучший для конкретной задачи вариант алгоритма генетического программирова-
ния, что позволяет полностью отказаться от выбора его наиболее эффективного варианта настроек. При 
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решении реальных задач анализа данных гибридный алгоритм продемонстрировал лучший результат среди 
всех рассмотренных альтернатив. 

 
Ключевые слова: алгоритм генетического программирования, самоконфигурация, нечеткий классификатор, 

локальный поиск на дискретных структурах.  
 
Introduction. A fuzzy classifier [1] is one of the intel-

ligent information technologies allowing the generation of 
a fuzzy rule base suitable for interpretation by human 
experts. It is an appropriate method for solving 
classification problems, which are a well-known 
application of natural computing algorithms.  

However, the process of fuzzy classifier design and 
adjustment is rather complex even for experts in fuzzy 
systems. For automated implementation of the fuzzy clas-
sifier it is necessary to consider its design as an optimiza-
tion problem. This problem is very complicated for stan-
dard optimization tools, which makes evolutionary algo-
rithms rather popular in this field [2; 3]. A genetic pro-
gramming algorithm (GP) can be used for the automated 
design of the fuzzy classifier rule base because of the abil-
ity of the GP to work with variable length chromosomes. 
The use of a GP can simplify the implementation of the 
Pittsburg [3] method and, in this case, there is no neces-
sity to implement the Michigan [2] method for reducing 
the dimension of the search space. 

It is well known that a GP requires a lot of effort in its 
adoption for any problem in hand. That is why before 
suggesting GP usage to end users, e. g., medicine or fi-
nance specialists for application in the development of 
classification tools, we must take care to avoid those main 
issues which are problems even for evolutionary compu-
tation experts. We have to suggest a way to avoid issues 
in the adjustment of the algorithm and the self-
configuration for GP (Self-CGP) [4] could be a solution 
here.  

It would be a good idea to use a local search for trees 
representing a fussy classifier rule base to improve the 
Self-CGP effectiveness. However, although the local 
search is often used for real valued and discrete optimiza-
tion problems nevertheless it is not commonplace to use it 
for such a data structure as a tree. In this paper, we con-
sider a new way for the local search on trees representing 
fuzzy rule bases. 

Having conducted numerical experiments, we have 
found that the proposed approach positively impacts on 
the performance of the algorithm and deserves special 
attention and further investigation.  

The rest of the paper is organized as follows. Section 
1 explains the idea of self-configuring evolutionary algo-
rithms. Section 2 describes the proposed method of fuzzy 
classifier automated design. Section 3 describes the idea 
of a local search for trees. Section 4 shows test results for 
the method proposed. Section 5 presents the results of the 
numerical experiments comparing the performance of the 
proposed approach and alternatives in solving real-world 
problems. In the Conclusion we discuss the results. 

Self-configuring evolutionary algorithm. The self-
configuring evolutionary algorithms (SelfCEA), which do 
not require for their adjustment any efforts of the end user 
as the method is adjusted automatically, use a dynamic 
adaptation on the population level [5] and centralized 

control techniques [6] for parameter settings with some 
differences from the usual approaches. Instead of tuning 
real parameters, variants of settings are used, namely 
types of selection (fitness proportional, rank-based, and 
tournament-based with three tournament sizes), crossover 
(one-point, two-point, as well as equiprobable, fitness 
proportional, rank-based, and tournament-based uniform 
crossovers [7]), population control and level of mutation 
(medium, low, high for all mutation types). Each of these 
has its own initial probability distribution, which is 
changed as the algorithm is executed [4].  

This self-configuring technique can be used both for 
genetic algorithms (SelfCGA) and genetic programming 
(SelfCGP). In [8] the SelfCGA the performance was es-
timated on 14 test problems from [9]. As a commonly 
accepted benchmark for GP algorithms is still an “open 
issue” [10], the symbolic regression problem with 17 test 
functions borrowed from [9] was used in [7] for testing 
the self-configuring genetic programming algorithm. The 
statistical significance was estimated with ANOVA. 

Analysing the results of SelfCGA [8] and SelfCGP [7] 
performance evaluation, we observed that the self-
configuring evolutionary algorithms demonstrate better 
reliability than the average reliability of the corresponding 
single best algorithm. They can be used instead of con-
ventional EA in complex problem solving. 

Self-Configuring Evolutionary Algorithm for 
Automated Fuzzy Classifier Design. We have to de-
scribe our method of modelling and optimizing a rule 
base for a fuzzy logic system with GP and linguistic vari-
ables adjusted with a GA.  

Usually, a GP algorithm works with a tree representa-
tion of solutions, defined by functional and terminal sets, 
and exploits specific solution transformation operators 
(such as selection, crossover, or mutation) until the termi-
nation condition is met [11]. The terminal set of our GP 
includes the terms of the output variable, i. e. class mark-
ers. The functional set includes a specific operation for 
dividing an input variables vector into sub-vectors or, in 
other words, for the separation of the examples set into 
parts according to input variable values. It might be that 
our GP algorithm will ignore some input variables and 
will not include them in the resulting tree, i. e., a high 
performance rules base that does not use all problem in-
puts can be designed. This feature of our approach allows 
the use of our GP for the selection of the most informative 
combination of problem inputs.  

The tuning of linguistic variables is executed to evalu-
ate the fuzzy system fitness that depends on its perform-
ance when solving the problem in hand, e. g., the number 
of misclassified instances. A linguistic variable consists of 
a set of terms or linguistic variable values representing 
some fuzzy concepts. Each of the terms is defined by a 
membership function. The tuning of linguistic variables 
consists in the optimization of membership function pa-
rameters simultaneously for all the terms of linguistic 
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variables involved in problem solving. In this paper, we 
propose adjusting linguistic variables with the self-
configuring genetic algorithm (SelfCGA) combined with 
the conjugate gradient method. We use here membership 
functions with a Gaussian shape. For the coding of mem-
bership function parameters, the mean value of the Gaus-
sian function and its standard deviation are written con-
secutively for each term in the chromosome. For auto-
matic control of the number of terms the possibility of 
ignoring a term is provided: all bits of the ignored term 
are set as 0 with the probability equal to 1/3.  

The efficiency of the proposed approach has been 
tested on a representative set of known problems. The test 
results showed that the fuzzy classifiers designed with the 
suggested approach (SelfCGP-FL) [12] have a small 
number of rules in comparison with the full rule base. 
These fuzzy systems usually have a small enough classifi-
cation error. This is why we can recommend the devel-
oped approach for solving real world problems. 

Local search for discrete structures. We can formu-
late some general rules of neighbourhood system con-
struction for trees that can be symbolic expressions, neu-
ral network models or fuzzy logic:  

1. The tree is neighbouring to the original one if one 
element of the terminal set was replaced with another 
element. 

2. The tree is neighbouring to the original one if one 
binary function from the functional set was replaced with 
another binary function. 

3. The tree is neighbouring to the original one if one 
unary function from the functional set was replaced with 
another unary function. 

4. Changes in the tree associated with functional ele-
ments generate larger changes in the phenotype than 
changes in the elements of the terminal set. 

Trees with modified leaves (terminal set elements) 
will be called 1-level neighbours and trees with a modi-
fied functional element will be called 2-level neighbours. 
In our hybridization of the local search with self-
configuring genetic programming for fuzzy logic classi-
fier design, trees with a randomly replaced class type will 
belong to the 1-level neighbourhood and trees with a ran-
domly replaced feature for vector dividing on sub-vectors 
will belong to the 2-level neighbourhood.  

The search in such neighbourhoods for the locally 
best-found solution should improve the efficiency of the 
problem solving without a significant increase in compu-
tational efforts. However, the effectiveness of the local 
search depends not only on the choice of neighbourhood 
but also on the method of search.  

There are several ways of movement between ad-
jacent trees: transition by the first improvement and 
steepest descent that mean an exhaustive search of 
neighbouring trees. In this paper, we will use both ways 
of movement and both systems of neighbourhood. In the 
first case, the 2-level neighbourhood will be used at the 
beginning of the algorithm execution and the 1-level 
neighbourhood will be used on the later stages. We call 
this method of search a “full” local search.  In the second 
case, only the 1-level neighbourhood will be used, this 
variant is named an “incomplete” local search.  Changes 
in tree nodes that are closer to the top of the tree have a 

more significant impact on the result obtained. Therefore, 
when we use the 2-level neighbourhood, nodes which are 
closer to the top will be changed before others. This 
means that the tree will be considered from in the top-
down way. Furthermore a “truncated” local search will be 
considered that means viewing only n randomly chosen 
nodes in the tree.  

The local search procedure on the tree structure 
can be described as follow:  

1. All tree nodes receive their numbers and order in 
which they will be considered: k1, k2, …, kn, where n is 
equal to the number of nodes which must be considered,  
ki is the number of the i-th node. The order of considered 
nodes depends on the chosen strategy of neighbourhood 
searching (“full”, “incomplete” or “truncated” local 
searches). Set i to be equal to 1. 

2. The new value for the ki-th node will be randomly 
chosen, which has to belong to the corresponding 
neighbourhood (the 1-level neighbourhood for leaves and 
the 2-level neighbourhood in other cases). 

3. If i is not equal to n then go to the step 3.1, other-
wise go to step 3.2.   

3.1. If the fitness value for the modified tree is better 
than for the original tree then, in the case of transition by 
the first improvement, we save the modified tree, set up  
i = i + 1 and go to step 2, and, in the case of steepest de-
scent, we save the fitness value and the modified tree and 
continue searching the original tree with i = i + 1 (go to 
step 2). Otherwise, if there is no fitness improvement, we 
continue searching the original tree with i = i + 1 (go to 
step 2). 

3.2. In the case of transition by the first improvement, 
the local search procedure is finished. In the case of 
steepest descent, we substitute the original tree by the best 
one found and with this new tree go to step 1. If the new 
tree is equal to the original one than the local search pro-
cedure is finished.  

During implementation and testing of the consid-
ered local search procedures the number of additional 
fitness function estimations must be taken into account. 
This number significantly depends on the way of the 
movement and the strategy for searching the neighbour-
hood. In addition, the speed of the hybrid algorithm de-
pends on the selection of individuals to be improved by 
the local search (only the best individual or p % best in 
each generation, or once every t generations).  

Experiment results for hybridization of local 
search with self-configuring genetic programming al-
gorithm for automated fuzzy classifier design. For the 
test of the proposed hybrid algorithm, the same test func-
tion set was used as for the self-configuring genetic pro-
gramming algorithm for automated fuzzy classifier gen-
eration. Since local search algorithms precisely identify 
the optimum position, the comparison of efficiency 
should be done with the criterion of reliability. The reli-
ability of the algorithm is the ratio of the number of suc-
cessful algorithm runs to the total number of algorithm 
runs. The algorithm run is considered as successful if the 
desired accuracy is achieved. Each algorithm received the 
same computing resources to find a solution and was 
launched 100 times for each test problem. The statistical 
significance was estimated with ANOVA. During testing 
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the performance evaluation was performed for the self-
configuring genetic programming algorithm hybridized 
with three types of local search (“full”, “incomplete” and 
“truncated”) and two strategies for movement (“first  
improvement” and “steepest descent”) that can be  
designated as “LS-1imp.+SelfCGP-FL-f”, “LS-
1imp.+SelfCGP-FL-inc”, “LS-1imp.+SelfCGP-FL-t”, 
“LS-SD+SelfCGP-FL-f”, “LS-SD+SelfCGP-FL-inc” and 
“LS-SD+SelfCGP-FL-t” respectively. 

The results obtained are presented in tab. 1. 
 

Table 1 
Algorithm reliability on test problems 

 
Algorithm Reliability Average number 

of fitness function 
evaluation 

SelfCGP+FL 0.64 
[0.33, 0.96] 

[4600, 21100] 

LS-1imp+SelfCGP-FL-f 0.68 
[0.37, 0.97] 

[4340, 20500] 

LS-1imp+SelfCGP-FL-inc 0.64 
[0.34, 0.96] 

[4150, 19800] 

LS-1imp+SelfCGP-FL-t 0.65 
[0.35, 0.97] 

[4210, 20050] 

LS-SD+SelfCGP-FL-f 0.72 
[0.43, 0.99] 

[4540, 21000] 

LS-SD+SelfCGP-FL-inc 0.66 
[0.38, 0.96] 

[4380, 20650] 

LS-SD+SelfCGP-FL-t 0.68 
[0.39, 0.96] 

[4500, 20800] 

 
The follow criteria for evaluating the algorithms were 

selected: 
1. Reliabilities that were averaged over all test prob-

lems and the spread of their values in brackets (“Reliabil-
ity”). 

2. Information on the number of resources required to 
find the first suitable solutions in terms of accuracy that 
were averaged over all tasks and in brackets the spread on 
all tasks (“Average number of fitness function evalua-
tion”).  

It is easy to see that the local search variant with a 
greater neighbourhood size and more detailed search 
though it has better reliability and a worse number of fit-
ness function evaluations. The proposed local search algo-
rithms increased the efficiency of the previously consid-
ered self-configuring genetic programming algorithms. 
With the joint application of self-configuring genetic pro-
gramming and local search algorithms the performance is 
more often greater than of the best setting variant of ge-
netic programming algorithms.  

Numerical Experiments with Real World 
Problems. The developed approach was applied to two 
credit scoring problems from the UCI repository [13] 
often used to compare the accuracy with various 
classification models: 

Credit (Australia-1) (14 attributes, 2 classes, 307 ex-
amples of creditworthy customers and 383 examples of 
non-creditworthy customers); 

Credit (Germany) (20 attributes, 2 classes, 700 records 
of creditworthy customers and 300 records of non-
creditworthy customers).  

Both classification problems were solved with fuzzy 
classifiers designed by hybrid SelfCGP (SelfCGP-FL) 
hybridized with a different variant of the local search 
(LS). This technique was trained on 70 % of the instances 
from the data base and validated on the remaining 30 % 
of examples. The results of the validations (the portion of 
correctly classified instances from the test set) averaged 
for 40 independent runs are given in tab. 2 below. The 
statistical significance of all our experiments was esti-
mated with ANOVA. 

We first compared the fuzzy classifier performance 
with ANN-based [14; 15] and symbolic regression based 
[7] classifiers automatically designed by SelfCGP 
(SelfCGP+ANN and SelfCGP+SRF). As we have ob-
served, the algorithm proposed in this paper demonstrates 
high performance on both classification tasks. 

We then conducted the comparison of the proposed 
algorithms with alternative classification techniques. The 
results for the alternative approaches have been taken 
from scientific literature. In [16] the performance evalua-
tion results for these two data sets are given for the au-
thors' two-stage genetic programming algorithm (2SGP) 
specially designed for bank scoring as well as for the fol-
lowing approaches taken from other papers: conventional 
genetic programming (GP), multilayered perceptron 
(MLP), classification and regression tree (CART), C4.5 
decision trees, k nearest neighbors (k-NN), and linear re-
gression (LR). We have taken additional material for 
comparison from [17] which includes evaluation data for 
the authors' automatically designed fuzzy rule based clas-
sifier as well as for other approaches found in the litera-
ture: the Bayesian approach, boosting, bagging, the ran-
dom subspace method (RSM), and cooperative coevolu-
tion ensemble learning (CCEL). The results obtained are 
given in tab. 2. As can be seen from tab. 2, the proposed 
algorithm demonstrates the best performance for both 
problems.  

It is necessary to stress that fuzzy classifiers designed 
by SelfCGP hybridized with local search give additionally 
human interpreted linguistic rules which is not the case 
for the majority of other algorithms in tab. 2. Designed 
rule bases usually contain 10–15 rules which do not in-
clude all given inputs, i. e. are much easier to be inter-
preted by humans.  

 
Table 2 

The comparison of classification algorithms 
 

Classifier Australian credit German credit 
LS+SelfCGP-FL 0.9041 0.8021 
2SGP 0.9027 0.8015 
SelfCGP-FL 0.9022 0.7974 
SelfCGP+ANN 0.9022  0.7954 
SelfCGP+SRF  0.9022 0.7950 
Fuzzy  0.8910 0.7940 
C4.5 0.8986 0.7773 
CART 0.8986 0.7618 
k-NN 0.8744 0.7565 
LR 0.8696 0.7837 
RSM 0.8660 0.7460 
Bagging 0.8470 0.6840 
Bayesian 0.8470 0.6790 
Boosting 0.7600 0.7000 
CCEL 0.7150 0.7151 
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Analysis of the data sets shows that input variables 
can be divided into some groups so that the inputs of one 
group are highly correlated to each other but the correla-
tion between inputs of different groups is weak. There are 
also inputs weakly correlated with the output. A fuzzy 
classifier designed with the suggested hybrid SelfCGP 
doesn’t usually include inputs of the last kind. Moreover, 
it usually includes members of every group of inputs but 
only one input from each, i. e. it does not include highly 
correlated inputs in the rule base. This allows the algo-
rithm to create relatively small rule bases with rather sim-
ple rules. 

Conclusion. The self-configuring genetic program-
ming algorithm and the local search were hybridized to 
design fuzzy classifiers with high efficiency. A special 
way of representing the solution provides the opportunity 
to create relatively small rule bases with rather simple 
rules. The quality of classification is high as well, which 
was demonstrated through the solving of two real world 
classification problems from the area of bank scoring.  

The results obtained allow us to conclude that the de-
veloped approach is workable and useful and should be 
further investigated and expanded. 
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