

Вестник СибГАУ. Том 16, № 1

 124

UDC 519.85

Vestnik SibGAU
Vol. 16, No. 1, P. 124–130

SELF-CONFIGURING MULTI-STRATEGY GENETIC ALGORITHM

FOR NON-STATIONARY ENVIRONMENTS

E. A. Sopov

Siberian State Aerospace University named after academician M. F. Reshetnev
31, Krasnoyarsky Rabochy Av., Krasnoyarsk, 660014, Russian Federation

E-mail: evgenysopov@gmail.com

Many real-world problems of design and control in a field of the aerospace lead to optimization problems. Such op-
timization problems are complicated and become a great challenge to many optimization techniques. Moreover, many
real-world optimization problems are dynamic and changing over time. Changes occur in the parameters, objectives
and/or problem constraints. In this case, search algorithms should have the capability to track moving optima and
adapt to a new environment. In past years many approaches for non-stationary optimization were proposed. The best
results are achieved using a stochastic population-based search such as evolutionary and genetic algorithms. Unfortu-
nately, real-world non-stationary optimization problems include various types of changes and are poorly predictable,
thus there is a problem of choosing a proper optimization technique and tuning its parameters. This study presents a
novel approach for designing a multi-strategy genetic algorithm based on a hybrid of the island model, cooperative and
competitive coevolution schemes. The approach controls interactions of different genetic algorithms and leads to the
self-configuring solving of problems with a priori unknown structure. A short survey on non-stationary optimization
problem and methods is presented. The results of numerical experiments for benchmark problems from the CEC compe-
tition are discussed. The proposed approach has demonstrated efficiency comparable with other well-studied tech-
niques for non-stationary optimization. And it has significant advantage – it does not require the participation of the
human-expert, because it operates in an automated, self-configuring way.

Keywords: dynamic optimization, non-stationary environment, self-configuring, genetic algorithm, coevolution.

Вестник СибГАУ

Т. 16, № 1. С. 124–130

САМОКОНФИГУРИРУЕМЫЙ ГЕНЕТИЧЕСКИЙ АЛГОРИТМ
НА БАЗЕ МНОЖЕСТВА СТРАТЕГИЙ ПОИСКА В НЕСТАЦИОНАРНОЙ СРЕДЕ

Е. A. Сопов

Сибирский государственный аэрокосмический университет имени академика М. Ф. Решетнева
Российская Федерация, 660014, г. Красноярск, просп. им. газ. «Красноярский рабочий», 31

E-mail: evgenysopov@gmail.com

Многие практические задачи проектирования и управления в аэрокосмической отрасли приводят к задачам
оптимизации. Подобные задачи являются сложными и затрудняют применение многих методов оптимизации.
Более того, многие практические задачи оптимизации являются динамическими и меняются с течением вре-
мени. Изменения происходят в параметрах задачи, целевых функциях и/или ограничениях. В этом случае алго-
ритмы оптимизации должны иметь возможность отслеживать меняющие положение оптимумы и постоян-
но адаптироваться к новой среде. Ранее было предложено множество подходов для решения задач нестацио-
нарной оптимизации. Наилучшие результаты демонстрируют стохастические популяционные алгоритмы,
такие как эволюционные и генетические алгоритмы. Представлен новый подход для проектирования генети-
ческого алгоритма, включающего множество стратегий поиска, который основан на гибридизации островной
модели, кооперативной и конкурирующей коэволюционных схем. Такой подход осуществляет управление взаи-
модействием многих генетических алгоритмов, что приводит к самоконфигурируемому решению задач опти-
мизации с априори неизвестной структурой. Представлен краткий обзор проблемы и методов решения задач
нестационарной оптимизации. Приводится анализ результатов численных экспериментов на множестве за-
дач, представленных на соревновании по нестационарной оптимизации в рамках международной конференции
CEC. Предложенный подход демонстрирует эффективность, сравнимую с другими хорошо изученными под-
ходами для решения задач нестационарной оптимизации. При этом подход имеет существенное преимущест-
во – он не требует привлечения специалиста, так как является самоконфигурируемым и решает задачу опти-
мизации в автоматизированном режиме.

Ключевые слова: динамическая оптимизация, нестационарная оптимизация, самоконфигурация, генетиче-

ский алгоритм, коэволюция.

Математика, механика, информатика

 125

Introduction. Many real-world optimization prob-
lems are non-stationary. Changes in the environment can
take various forms such as changes in the parameters,
objectives or problem constraints. As a result, in such
dynamic environments the position of the global and local
optima changes. This feature is called the optima drift.
Non-stationary optimization problems are also called dy-
namic optimization problems (DOP) or changing (non-
stationary, dynamic) environment optimization [1].

There exist many examples of real-world problems in
a field of the aerospace, that are non-stationary. For ex-
ample, the problem of fuel mixture optimization for jet
engines. The dependence of the engine output on the mix-
ture quality changes over time due to degradation of en-
gine components or with component failure. When plan-
ning routes of civil aviation, as well as planning landings
and takeoffs, it is often required to design a new plan on
the fly, for example when the original plan changes or
there are changes of weather conditions, etc.

Other examples from other areas are for example in
game theory with a change of opponent strategy, in job
shop scheduling problems with the addition of a new job,
in financial problems with changes in markets, in speech
recognition with changes in the acoustic environment, etc.

In the field of mathematical optimization, there exists
framework for modelling optimization problems that in-
volve uncertainty. It is called stochastic programming.
Stochastic programming is based on a fact that the prob-
ability distributions of optimization model parameters are
known or can be estimated. In real-world applications, the
nature of non-stationarity is not known beforehand, and
often is not stochastic. Thus, search optimization methods
are preferred and are often the only ones applicable.

In the case of stationary optimization, the main goal is
to find the optimal solution to the problem (fig. 1). The
efficiency criteria for optimization algorithms are accu-
racy and the number of objective evaluations (or compu-
tational cost).

In the case of non-stationary optimization, the position
of optima is changing over time, so the search algorithm
should have the capability to track moving optima and
adapt to a new environment. Efficiency criteria are accu-
racy and adaptation speed. Unfortunately, standard search
optimization methods are not able to adapt to changes.
Moreover, they converge to the best-found solution and
lose the previously collected information about search
space (fig. 2).

It is obvious that the traditional optimization tech-
niques are not efficient enough with non-stationary prob-
lems. Many researchers prefer the population-based ap-
proaches that are able to track the optimum position more
efficiently as the search involves several parallel solu-
tions. The best results for DOP are achieved using nature-
inspired algorithms [2].

Related work. A non-stationary optimization problem
or DOP can be defined as:

(,)

()
f x t extr

x D t



,

(,) 0, 1,ig x t i q  ,

(,) 0, 1,ih x t i q m   ,

1 2(, , ...,) (), () , : , ,Nx x x x D t D t S f D R t T    

where S is the search space; D(t) is a set of feasible solu-
tions, constrained with gi and hi; t is the time.

Fig. 1. Search algorithm converges to optimum

Fig. 2. Environment has changed and optimum has moved

Вестник СибГАУ. Том 16, № 1

 126

In such a problem statement, the objective and the
constraints depend on the solution vector x and on the
certain value of time t. This means that the objective and
the feasible region of the search space are both changing
over time. However, the problem can be considered as a
unique stationary problem at each fixed point of time.

The solution to the problem of non-stationary optimi-
zation is a set of global optima for all values of time (in a
case of minimization):

 *() ()| (), (,) (,) , ,x t x D t x D t f x t f x t t T      

where *x is the global optimum value.
A good survey on DOP methods is proposed in [3].

The range of search techniques is rather wide and con-
tains:

 evolutionary and genetic algorithms (EA and GA);
 evolutionary strategies (ES);
 evolutionary programming (EP);
 cooperative strategies (CS);
 cultural algorithms;
 swarm intelligence (PSO);
 estimation-of-distribution algorithms (EDA);
 immune-based algorithms;
 memetic algorithms;
 ant colony optimization;
 self-organizing scouts;
 neural networks;
 other techniques.
It should be noted that a large proportion of works and

of the better results are related to evolutionary algorithms.
Other approaches are good in some specific applications.

There exist the following types of environment
changes that define certain non-stationary optimization
problem [4]:

1. Coordinate transformations lead to a new position
of optima. Values and the structure of optima do not
change. There are the following coordinate transforma-
tions:

 Drifting landscape. The whole landscape moves in
some direction with a constant, variable or random speed
value;

 Rotating landscape. The landscape is rotating
around a point in the search space;

 Chaotic coordinate changes.
2. Landscape rescaling leads to changes of objective

values while maintaining the overall structure of optima.
Values may either increase (swelling) or decrease (shrink-
ing).

3. Landscape stretching leads to landscape topology
changes while maintaining the overall positions of op-
tima.

A known specialist in the field of non-stationary opti-
mization, Shengxiang Yang, notes that most real-world
optimization problems have the following properties [5]:

 DOPs are non time-linkage problems;
 changes are assumed to be detectable;
 coordinates and topology are changing;
 DOPs have unpredictable changes;
 DOPs have cyclic/recurrent changes.

Standard evolutionary algorithms have no features that
provide adaptation to environment changes. Thus, re-
searchers use different heuristics. There are two main
approaches: maintaining the diversity of population and
memorizing past search experience. Known techniques
include the following:

1. Restarting optimization. If a change in the envi-
ronment is detected, the search is restarted. As a restart
leads to a completely new optimization, there is no influ-
ence of a certain change type.

2. Local adaptation. If only slight changes occur, it is
reasonable to use local operators to create new solutions
in the local region of the current individuals. Most of the
known approaches uses a modified mutation operator, for
example hypermutation, variable local search (VLS), dis-
tance-based mutation in the multinational GA and others.
Another way is to use the external local search procedure.

3. Memorizing previous solutions. In a case of time-
dependent changes, new landscapes can become very
similar to previous ones, so it is a good idea is to memo-
rize previous solutions to guide the search to those previ-
ously explored regions in the search space. There are two
different approaches: explicit and implicit memory tech-
niques.

The explicit memory uses external storage for previ-
ous candidate solutions that can be reevaluated and rein-
serted into the population if a change in the environment
occurs. The implicit memory uses the concept of the dip-
loid chromosomes which contain two sets of genes encod-
ing the solution. Only one set participates in selection and
reproduction, and this set is called dominant set. If a
change occurs, the dominance of the sets is reevaluated
and the dominant set can be substituted by the redundant
part of chromosome.

4. Diversity increasing techniques. Almost every ap-
proach in the field of DOP focuses on the maintenance of
genetic diversity in the population. There are at least three
groups of special techniques.

The first technique increases diversity by introducing
random individuals into the population with each genera-
tion. This group includes random immigrants, partial hy-
permutation and hypermutation techniques. The second
group is niching techniques. The main idea is to decrease
the fitness value for solutions if some local region (called
the niche) around them contains other individuals. The
third group uses the idea of restricted mating. The popula-
tion is divided into several subpopulations. The recombi-
nation operator is restricted to individuals of the same
subpopulation. A more simple way is to restrict the re-
combination of the closest individuals.

5. Multi-population techniques. The population is di-
vided into competing subpopulations. Each sub-
population responds for a particular region of the search
space or may have its own goal. Subpopulations may in-
teract to improve the search. This approach combines
diversity, memory and adaptation mechanism. The im-
plementation of the multi-population technique depends
on the particular optimization problem that leads to a spe-
cific partition of the population and specific goals of sub-
populations.

6. Self-adaptive techniques. Self-adaptation is very
popular and successful in stationary optimization. In DOP,

Математика, механика, информатика

 127

the adaption involves learning from past experience. The
term “self-adaptation” means that control parameters of
evolutionary algorithm are encoded in the chromosome
with the representation of the solution. Thus, the evolu-
tionary algorithm implements the search for a solution of
the original problem and the adjustment of the algorithm
parameters under the current search situation.

7. Algorithms with overlapping generations. A stan-
dard evolutionary algorithm forms a new population with
every next generation. The previous population is elimi-
nated, but the search experience is saved in implicit form
in the genes of the current population. In DOP, better re-
sults are obtained with the steady-state model instead of
the generational model. The steady-state model uses only
a small part of the population (usually only two solutions)
on each iteration to reproduce a small number of new
solutions.

8. Learning of the underlying dynamics. Many future
changes in the environment can be predicted using infor-
mation about previous changes and the current situation.
It is reasonable to use this information to adapt the search
according to predictions. Cyclic changes can be predicted
in an implicit form using memory techniques. However,
arbitrary changes require the development of some exter-
nal procedures that can be trained on historical data.
There exists many approaches using mathematics, statis-
tics or machine learning.

Prediction-based algorithms have disadvantages,
mostly due to training errors. The algorithms may need a
relatively large set of training data to produce good re-
sults, so it means that the prediction can be started after
sufficient training data has been collected. If the algo-
rithm has not performed successfully in the previous
change periods, the historical data collected by the algo-
rithm might provide the wrong training data. Moreover,
not all types of changes can be predicted.

The main disadvantage of dynamics modelling is that
this approach uses techniques different from evolutionary
algorithms. Choosing the correct method for analysis and
predicting the dynamics of changes, their training and
implementation are complex problems themselves, com-
parable in complexity to the original optimization problem.

The experimental investigation of different techniques
shows that there is no universal approach to adapt to all
types of changes in the environment. As mentioned
above, real-world problems of non-stationary optimiza-
tion include various types of changes and are poorly pre-
dictable. Moreover, even if the type of changes is a priori
known, one should select the proper structure of evolu-
tionary algorithm and fine tune its parameters.

Thus, there is an actual scientific problem of design-
ing self-configuring techniques that are able to deal with
many types of changes in the environment.

Self-configuring multi-strategy genetic algorithm.
In the field of statistics and machine learning, ensemble
methods are used to improve decision making. On aver-
age, the collective solution of multiple algorithms pro-
vides better performance than could be obtained from any
of the constituent algorithms. This concept can be used in
the field of EA. The main idea is to include different
search strategies in the ensemble and to design effective
control of algorithm interaction.

There are at least two well-studied approaches to the
interaction of an EA: the coevolutionary approach and the
island model.

The island model was introduced as a parallel version
of an EA. In a parallel implementation of the island
model, each machine executes an EA and maintains its
own population for search. The machines periodically
exchange a portion of their populations (it is called migra-
tion). In a case of separable search problems, the island
model performs better results than the serial single popu-
lation model.

The coevolution algorithm is an evolutionary algo-
rithm in which fitness evaluation is based on interactions
between individuals. The interaction can take place in a
single population or in multiple populations, where each
population can be processed by its own EA. There are two
types of interaction: competitive and cooperative. Usually
the coevolution is referred to problem decomposition, and
the cooperative scheme is applied.

Coevolution can also be applied to perform the self-
configuring. It is known that an EA has many parameters
to be tuned. The incorrect values of the parameters lead to
low efficiency of the algorithm. The self-configuring co-
evolutionary algorithm is a hybrid of the island model,
competitive and cooperative coevolution. The total popu-
lation is divided into disjoint subpopulations of equal size.
The portion of the population is called the computational
resource. Each subpopulation corresponds to certain EA
with its own parameters values and evolves independently
(corresponds to the island model). After some period, the
performance of individual algorithms is estimated and the
computational resource is redistributed. EAs with better
performance increase their population size (the competi-
tive scheme). Finally, random migrations of the best solu-
tions are presented to equate start positions of EAs for the
run with the next period (the cooperative scheme). Such a
coevolution technique eliminates the necessity to define
an appropriate algorithm for the problem as the choice of
the best algorithm is performed automatically during the
run [6; 7].

In [8; 9] a new self-configuring coevolutionary tech-
nique was introduced. It is based on the idea mentioned
previously, but it uses many different search strategies
instead of the only EA. The approach was designed and
then investigated with complex multi-objective optimiza-
tion problems. It was called the self-configuring coevolu-
tionary multi-objective genetic algorithm or SelfCO-
MOGA.

This work presents a novel multi-strategy approach to
non-stationary optimization, which is called in a similar
way the self-configuring DOP genetic algorithm or Self-
DOPGA. The main idea is to include in the self-
configuring coevolutionary algorithm many search strate-
gies, which can deal with many different types of changes
in the environment. The competitive interaction should
lead to an automated choice of the proper DOP algorithm.
The cooperative interaction should supply all algorithms
with useful information about past search experience col-
lected and is presented in different forms.

In this work, all EAs are assumed to be genetic algo-
rithms with binary representation. GAs are a well-studied
technique, so many efficient algorithms can be used as

Вестник СибГАУ. Том 16, № 1

 128

core algorithms for DOP approaches [10; 11]. The binary
GA allows to deal with problems that contain variables of
various types (real, integer, Boolean, rank values, permu-
tation, etc.).

The general SelfDOPGA scheme is as follows:
Step 1. Define a set of algorithms included in the co-

evolution.
Step 2. Perform algorithms run over some time until a

change in the environment is observed.
Step 3. Estimate the performance for each algorithm

over the period.
Step 4. Redistribute the computational resources and

perform a new run (go to the step 2).
We will discuss the SelfDOPGA steps in detail.
The first step defines the search strategies. Any com-

bination of DOP algorithms can be included in Self-
DOPGA. The combination can be designed using a priori
information about certain problem. Otherwise, different
(or all available) strategies should be included. In this
work, we will use the following list of DOP techniques
(varied parameters are shown in brackets):

 Self-adaptive technique (probabilistic GA with
self-configuring parameters);

 Restarting optimization (the percentage of the
population that is substituted with new randomly gener-
ated individuals);

 Local adaptation (the distance-based mutation rate
in multinational GA);

 Diversity increasing technique (the size of niche);
 The explicit memory (the size of external storage).
Some the techniques mentioned above were excluded.

For example, the multi-population technique is already
presented by different populations in the multi-national
GA. Populations of GAs in the SelfDOPGA are also dif-
ferent as GAs use different search strategies. The dynam-
ics modelling uses techniques different from evolutionary
algorithms, so it cannot be applied in a form of the coevo-
lution.

The second step is the running of algorithms until a
change in the environment is observed. Detection of
changes can be performed by re-evaluating the fitness of
specific solutions (called detectors). The detector can be
the current best individual. Also changes can be detected
by analysis of algorithm behaviour (in the case the current
best was out of the optima). Changes are detected based
on monitoring the drop in value of the average of the best-
found solutions over a number of generations.

The third step is performance estimation. The per-
formance measure is the offline error [12], which is the
average error at every time step over the best solution
found by the algorithm since the last change in the envi-
ronments:

1

1
((),)

pT

i best
tp

OfflineError fitness x t t
T 

  ,

where Tp is the number of generations between two con-
sequent changes; xbest(t) is the best individual in a popula-
tion at moment t and i is number of the algorithm.

The fourth step performs the redistribution of popula-
tions. All algorithms give to the “winner” algorithm a
certain percentage of their population size. Each algo-

rithm has a minimum guaranteed resource that is not dis-
tributed.

Experimental results. To investigate the performance
of the SelfDOPGA, two test problems are used: the mov-
ing peaks benchmark (MPB) and the dynamic Rastrigin
function. The MPB is the standard for testing DOP algo-
rithms, as it is thought to be a simulation of various real-
world optimization problems. The static Rastrigin func-
tion is a complex optimization problem with a large num-
ber of deceptive local optima. The dynamic version of the
Rastrigin function simulates a complex dynamic problem.
Both problems are well-studied, so we can compare the
performance with many DOP techniques [12–14].

The MPB defines an n-dimensional landscape with a
pre-set number of peaks (p). Peaks are defined with spe-
cific locations (denoted as X), heights (H) and widths (W).
The peaks are distributed randomly in a pre-defined area.
Peaks may vary its height, width and location over time.
The fitness function for the MPB is formulated as fol-
lows:

MPB
1,..., 2

1

()
(,) max .

1 () (())

i
ni p

i j j
j

H t
f x t

W t x X t




 
 
   
    
 



A shift of a single peak can be defined as:

() (1) ()i i iX t X t v t   ,

() ((1) (1))
(1)i i

i

s
v t r v t

r v t
      

 
,

where r is a random shift vector; s is a parameter regulat-
ing the length of the movement (the severity). A parame-
ter  sets a balance between the random and directed
movement. The value of  = 0.0 results in a completely
random direction of movement. The value of  = 1.0
makes every move direction depend on the direction of
the previous move.

The set of the MPB parameters is called the “sce-
nario”. The majority of the research in the field of non-
stationary optimization uses Scenario 2 (tab. 1) [15].

Table 1

Parameter settings for MPB

Parameter Settings
Dimensions (n) 5

Coordinates range (xmin, xmax) [0,100]
Peak heights (H) [30,70]
Peaks widths (W) [1,12]

Evaluations between changes 5000
The severity (s) 1.0

Correlation coefficient () 0.0

The dynamic Rastrigin function is defined as follows:

2

1

 (,)

(()) 10cos(2 2 ()) 10 ,

Rastrigin

D

i i
i

f x t

x t x t




         

where [5.12,5.12]ix   ; ()t is a random number

changed over times within [0.8,0.8] .

Математика, механика, информатика

 129

The SelfDOPGA settings are:
 Population size – 500 (all algorithms start with 100

individuals);
 Chromosome length (the MPB) – 80 bits (discreti-

zation step is 1.5×10-3);
 Chromosome length (dynamic Rastrigin function) –

10 bits per a dimension (discretization step is 10–2);
 All results are the averages of 100 independent

runs;
 All algorithms are self-configuring in a way de-

scribed in [11];
 The size of external storage for the explicit memory

technique – 20.
The results of numerical experiments are shown in

tab. 2 and 3. The results of the SelfDOPGA runs are com-
pared with the performance of 5 individual algorithms and
its average.

Table 2
Offline error for the MPB

Algorithm p = 1 p = 5 p = 10 p = 20
Self-adaptive 0.5 3.27 9.96 8.72
Restarting optimization 1.25 5.03 10.87 9.35
Local adaptation 0.96 4.85 10.84 11.5
Diversity increasing 0.4 3.93 9.01 7.97
The explicit memory 1.98 7.63 16.25 17.82
Average 1.018 4.942 11.386 11.072
SelfDOPGA 0.82 4.56 7.12 7.33

Table 3

Offline error for dynamic Rastrigin function

Algorithm D = 2 D = 5 D = 10
Self-adaptive 0 3.56 14.53
Restarting optimization 0 4.02 15.01
Local adaptation 0 6.74 21.23
Diversity increasing 0.7 6.87 21.8
The explicit memory 1.3 8.15 34.36
Average 0.4 5.868 21.386
SelfDOPGA 0 2.83 11.56

As we can see, the SelfDOPGA shows better perform-

ance that the average performance of individual tech-
niques. The most significant difference is observed in
complex problems with higher dimensionality. In the case
of low dimensionality, the SelfDOPGA yields to the best
algorithm. The memory approach shows low perform-
ance, because changes are not cyclic, but random.

Although there is a single technique that is better or
equal to the performance of the SelfDOPGA, the choice
of the appropriate algorithm requires the problem analy-
sis. The SelfDOPGA does not use any a priori informa-
tion about a problem and controls the search strategy
automatically during the run.

Conclusions. Optimization in a changing environment
is a complex problem. In many real-world problems, the
changes are random and their types are unknown before-
hand. There exists a great variety of search strategies that
are efficient with a specific type of changes.

In this work, the self-configuring DOP genetic algo-
rithm with a multiple strategy ensemble is proposed. The
combination of competitive and cooperative coevolution
schemes is used to control search strategies interaction.

The SelfDOPGA has better performance than the average
performance of individual algorithms and performs auto-
matically in an adaptive way.

In further works, the SelfDOPGA should be extended
with other DOP techniques. More non-stationary prob-
lems with different types of changes should be tested.

Acknowledgements. This research is supported by

the Ministry of Education and Science of the Russian
Federation within the State assignment № 2.1889.2014/K.
The author expresses his gratitude to Mr. Ashley Whit-
field for his efforts to improve the text of this article.

Благодарности. Исследования поддерживаются
Министерством образования и науки Российской Фе-
дерации в рамках государственного проектного зада-
ния № 2.1889.2014/К. Автор выражает признатель-
ность Эшли Уитфильду за помощь в совершенствова-
нии текста статьи.

References

1. Yang S., Jin Y. Evolutionary Computation in Dy-

namic and Uncertain Environments. Springer-Verlag,
Berlin, Heidelberg, 2007, 605 p.

2. Nguyena T.T., Yang S., Branke, J. Evolutionary
dynamic optimization: A survey of the state of the art.
Swarm and Evolutionary Computation 6, 2012, p. 1–24.

3. Cruz C., González J. R., Pelta D. Optimization in
dynamic environments: a survey on problems, methods
and measures. Soft Computing, Springer-Verlag, 2011,
no. 15 (7), p. 1427–1448.

4. Weicker K. Evolutionary Algorithms and Dynamic
Optimization Problems. Ph.D. dissertation thesis, Der
Andere Verlag, 2003, 211 p.

5. Yang, S., Evolutionary Computation for Dynamic
Optimization Problems. Tutorial, GECCO’13, 2013, p.
667–682.

6. Goh C.-K., Tan K. C. A competitive–cooperative
coevolutionary paradigm for dynamic multiobjective op-
timization. IEEE Transactions on Evolutionary Computa-
tion, 2009, no. 13(1), p. 109–127.

7. Ivanov I., Sopov E. [Self-configured genetic algo-
rithm for multi-objective decision making support]. Vest-
nik SibGAU. 2013, no. 1(47), p. 30–35 (In Russ.).

8. Ivanov I., Sopov E. [Investigation of the self-
configured coevolutionary algorithm for complex multi-
objective optimization problem solving]. Sistemy
Upravleniya i Informatsionnye Tekhnologii. 2013, no.
1.1(51), p. 141–146 (In Russ.).

9. Ivanov I., Sopov E. Design Efficient Technologies
for Context Image Analysis in Dialog HCI Using Self-
Configuring Novelty Search Genetic Algorithm. In the
11th International Conference on Informatics in Control,
Automation and Robotics, ICINCO’14. Vienna, Austria,
2014, p. 832–839.

10. Sopov E. A., Sopov S. A. The convergence pre-
diction method for genetic and PBIL-like algorithms with
binary representation. Proceeding of IEEE International
Siberian Conference on Control and Communications
(SIBCON’11), Tomsk, 2011, p. 203–206.

11. Semenkin E. S., Semenkina M. E. Self-
configuring Genetic Algorithm with Modified Uniform

Вестник СибГАУ. Том 16, № 1

 130

Crossover Operator. Advances in Swarm Intelligence.
Lecture Notes in Computer Science 7331. Springer-
Verlag, Berlin Heidelberg, 2012, p. 414–421.

12. Branke J., Schmeck H. Designing evolutionary al-
gorithms for dynamic optimization problems. Theory and
Application of Evolutionary Computation: Recent Trends,
Springer-Verlag, 2002, p. 239–262.

13. Morrison R. W., De Jong K. A. A test problem
generator for non-stationary environments. Proc. the 1999
Congr. on Evol. Comput., 1999, p. 2047–2053.

14. Li C., Yang S., Nguyen T.T. et al. Benchmark
Generator for CEC2009 Competition on Dynamic Opti-
mization, Technical Report 2008, Department of Com-
puter Science, University of Leicester, U.K., 2008, 14 p.

15. Branke J., Memory enhanced evolutionary algo-
rithms for changing optimization problems. In Proc. the
Congr. on Evol. Comput, 1999, p. 1875–1882.

Библиографические ссылки

1. Yang S., Jin Y. Evolutionary Computation in Dy-
namic and Uncertain Environments. Berlin, Heidelberg :
Springer-Verlag, 2007, 605 p.

2. Nguyena T. T., Yang S., Branke J. Evolutionary
dynamic optimization: A survey of the state of the art //
Swarm and Evolutionary Computation. 2012. № 6. Рp. 1–24.

3. Cruz C., González J. R., Pelta D. Optimization in
dynamic environments: a survey on problems, methods
and measures // Soft Computing. 2011. № 15 (7).
Рp. 1427–1448.

4. Weicker K. Evolutionary Algorithms and Dynamic
Optimization Problems : Ph. D. dissertation thesis. Der
Andere Verlag, 2003. 211 p.

5. Yang S. Evolutionary Computation for Dynamic
Optimization Problems // Tutorial, GECCO’13. 2013.
Рp. 667–682.

6. Goh C.-K., Tan K. C. A competitive–cooperative
coevolutionary paradigm for dynamic multiobjective op-
timization // IEEE Transactions on Evolutionary Compu-
tation. 2009. № 13(1). Рp. 109–127.

7. Иванов И., Сопов Е. Самоконфигурируемый ге-
нетический алгоритм решения задач поддержки мно-
гокритериального выбора // Вестник СибГАУ. 2013.
№ 1 (47). С. 30–35.

8. Иванов И., Сопов Е. Исследование эффективно-
сти самоконфигурируемого коэволюционного алго-
ритма решения сложных задач многокритериальной
оптимизации // Системы управления и информацион-
ные технологии. 2013. № 1.1 (51). С. 141–146.

9. Ivanov I., Sopov E. Design Efficient Technologies
for Context Image Analysis in Dialog HCI Using Self-
Configuring Novelty Search Genetic Algorithm // In the
11th Intern. Conf. on Informatics in Control, Automation
and Robotics, ICINCO’14. Vienna, Austria, 2014.
Рp. 832–839.

10. Sopov E. A., Sopov S. A. The convergence pre-
diction method for genetic and PBIL-like algorithms with
binary representation // Proceeding of IEEE International
Siberian Conference on Control and Communications
(SIBCON’11). Tomsk, 2011. Рp. 203–206.

11. Semenkin E. S., Semenkina M. E. Self-
configuring Genetic Algorithm with Modified Uniform
Crossover Operator. Advances in Swarm Intelligence //
Lecture Notes in Computer Science 7331. Berlin Heidel-
berg : Springer-Verlag, 2012. Рp. 414–421.

12. Branke J., Schmeck H. Designing evolutionary al-
gorithms for dynamic optimization problems. Theory and
Application of Evolutionary Computation: Recent Trends.
Springer-Verlag, 2002. Рp. 239–262.

13. Morrison R. W., De Jong K. A. A test problem
generator for non-stationary environments // Proc. the
1999 Congr. on Evol. Comput. 1999. Рp. 2047–2053.

14. Benchmark Generator for CEC2009 Competition
on Dynamic Optimization / C. Li [et al.] // Technical Re-
port 2008. Department of Computer Science, University
of Leicester, 2008. 14 p.

15. Branke J. Memory enhanced evolutionary algo-
rithms for changing optimization problems // In Proc. the
Congr. on Evol. Comput. 1999. Pp. 1875–1882.

© Sopov E. A., 2015

