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This paper describes a modification of the self-configuring hybrid evolutionary algorithm for solving classification 

problems. The algorithm implements a hybridization of Pittsburg and Michigan approaches, where Michigan part is 
used together with mutation operator. The rule bases use fixed fuzzy terms, and the number of rules in the rule base can 
change during the algorithm run. Also, the applied algorithm uses a set of heuristics to determine the weights and class 
labels for every fuzzy rule, using the confidence values, which are calculated using the training sample. A special ini-
tialization procedure allows getting more accurate fuzzy rule bases on the first generations. The modification changes 
the procedure of determining the most appropriate class number for the fuzzy rule. It uses the number of instances of 
different classes, as a weighting coefficient to avoid confidence values bias. Also, we apply two classification quality 
measures, the classical accuracy value and the average accuracy among classes. The modification, combined with dif-
ferent classification quality measures, allows improvement in the classification results. The self-configuring algorithm 
is tested on a set of unbalanced classification problems with several classes using cross-validation and a stratified sam-
pling procedure. The test problems included image segment classification, bank client classification, phoneme recogni-
tion, classification of page contents, and satellite image classification. For one of the problems, the confusion matrixes 
are provided to show the increasing balance over the class accuracies. The presented method has efficiently solved the 
satellite images classification problem and can be applied for many real-life problems, including the problems from 
aerospace area. 
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Рассматривается модификация самоконфигурируемого гибридного эволюционного алгоритма для решения 
задач классификации. В алгоритме реализована гибридизация Питсбургского и Мичиганского подходов, где 
Мичиганская часть используется вместе с оператором мутации. Базы правил используют фиксированные не-
четкие термы, а число правил в базе может меняться в ходе работы алгоритма. Также примененный алго-
ритм использует набор эвристик для определения весов и номеров классов для каждого нечеткого правила с 
использованием значений достоверности (confidence), которые рассчитываются по обучающей выборке. Осо-
бая процедура инициализации позволяет получать более точные нечеткие базы правил на первых поколениях. 
Модификация изменяет процедуру определения наиболее подходящего номера класса для нечеткого правила. 
Она использует число объектов различных классов в качестве весовых коэффициентов, чтобы избежать сме-
щения значений достоверности. Модификация в комбинации с другими мерами качества классификации позво-
ляет улучшить результаты классификации. Самоконфигурируемый алгоритм был протестирован на ряде за-
дач классификации с несбалансированными данными и несколькими классами с применением процедуры кросс-
валидации и стратифицированным разбиением выборки. Тестовые задачи включали классификацию сегментов 
изображения, классификацию клиентов банка, распознавание фонем, классификацию содержимого страниц и 
классификацию снимков со спутника. Для одной из задач были приведены матрицы ошибок, для того чтобы 
показать увеличение баланса точности по классам. Представленный подход успешно решил задачу классифи-
кации снимков со спутника и может быть применен для множества реальных задач, включая задачи из аэро-
космической области. 
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Introduction. Classification problems are typical 
problems for data analysis, and a vast number of ap-
proaches and techniques have been proposed to solve 
them. These techniques, such as, for example, artificial 
neural networks (ANN), support vector machines (SVM) 
and genetic programming (GP) might show very good 
results on some datasets, but there are still some problems 
to be resolved. These include processing big datasets with 
many instances, feature selection problems, missing val-
ues, and so on. Among them, there is also the problem of 
unbalanced data; it has been recently said to be one of the 
main obstacles preventing good classification results [1; 2]. 

The imbalance in classification datasets means that the 
number of instances of different classes is not the same 
for all classes. For example, for two-class datasets, this 
problem occurs when the number of instances of one class 
is much lower than the number of instances of the other 
class. The class that has more instances is called the ma-
jority class, while the other one is called the minority 
class. The higher the unbalance ratio is, the more difficult 
the classification problem becomes.  

During the classifier learning process, especially when 
learning is conducted by evolutionary algorithms, this 
unbalance may lead to bias in classification results. That 
means that the classifier focuses on the majority class, and 
most of its instances are classified correctly, while the 
minority class is classified incorrectly. The reason for this 
is the learning procedure, and basically the classification 
quality criterion, which in most cases is simply the overall 
accuracy on the whole dataset. Although the overall accu-
racy may seem to be high, actually only the majority class 
may be classified correctly, so that for unbalanced data-
sets accuracy cannot be an adequate criterion. One more 
important thing is that in the vast number of real-world 
problems the minority class is the class-of-interest for the 
researcher; classifying it correctly is actually solving the 
problem. 

The known methods for dealing with unbalance prob-
lems are divided into two groups: external and internal 
approaches. External approaches are used to change the 
learning sample so that it becomes balanced; these ap-
proaches use some sampling methods and can be very 
helpful in some situations. Yet in this paper we will focus 
on internal approaches, which are used to change the 
learning criterion so that it takes the unbalance ratio into 
account. Moreover, we will introduce the different modi-
fied initialization procedure for the algorithm that we used 
in our previous works. 

Hybrid fuzzy evolutionary algorithm. The algorithm 
used in this work is based on ideas by Ishibuchi [3; 4], 
and the main idea of learning fuzzy classifiers from data 
was presented by Wang and Mendel [5]. This algorithm 
combines the Pittsburg and Michigan approaches for evo-
lutionary classifier learning so that the Michigan-style 
algorithm is used as a mutation operator. We will give a 
short description of the main features of this algorithm 
here. 

Each individual in the population is a rule base and the 
number of rules is not fixed, although the maximum 
number of rules cannot be exceeded. Each rule is an inte-
ger string with numbers from [0, 14], each meaning the 
number of a certain fuzzy set. For each variable several 

fuzzy partitions are used as shown in picture. There are 4 
partitions into 2, 3, 4, and 5 fuzzy sets. Also the “don’t 
care” term is used and named as a zero fuzzy set. During 
the fuzzy inference procedure the “don’t care” condition 
always returned the membership function value equal  
to 1, whatever the value of the variable is. There are also 
possible some other approaches for setting the fuzzy parti-
tions, for example, 2-tuples representation [6]. 

There are two types of selection used (rank and tour-
nament), one crossover operator and three mutation op-
erators (weak, medium and strong). The tournament size 
was equal to 3, and the mutation probability depended on 
the number of rules in the rule base. After the mutation 
operator, the Michigan part is applied to each rule base, so 
that each rule in it is an individual. There are three types 
of Michigan operators that could be applied to the rules in 
the base. The first one adds new rules, if the size of the 
rule base was not exceeded, the second deletes the worst 
rules from the base, and the third firstly deletes rules and 
then adds new rules into the base. Adding new rules is 
performed by heuristic and genetic approaches. The heu-
ristic approach generates new rules from the misclassified 
instances, and the genetic approach generates rules from 
existing ones by genetic operators. 

 

 
 

Four fuzzy partitions used in the algorithm 
 
For selection, mutation, the Michigan part and the 

type of rules adding the self-configuration procedure de-
scribed in [7; 8] is applied. This self-configuration is 
based on the success rates of the operators, calculated 
using the fitness improvements. 

For each rule the class number and the rule weight are 
calculated, and these values are not coded in the chromo-
some, but determined heuristically. The confidence value 
is used in both cases so we used the approaches proposed 
in [9]. During the initialization procedure, after the ante-
cedent parts of rules are set at random, the confidence 
value for the new rule is calculated as follows: 
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value was attached to the rule, but for unbalanced data-
sets, the confidence values become biased as they calcu-
late the sum of membership functions over all instances of 
every class. This means that for the minority class the 
confidence values can be smaller not because the rule 
covers the instances of this class worse than the majority 
class, but simply because the number of instances is not 
balanced. This leads to the problem that most of the gen-
erated rules are tied with the majority class, although they 
may describe an important part of the minority class. 

To avoid this bias, a modified procedure of class 
number definition is proposed, which uses the number of 
class instances for every class as a weight: 

( Class )
Class arg max( ),q

k k

Conf A k
q m

m


    

where km  is the number of instances in class k. This 

modification is supposed to improve classification quality 
and accuracy in case of unbalanced datasets. For the bal-
anced datasets, this equation does not change the results 
of choosing the class number. 

Acc and Ave values for estimating the classification 
quality. The typical approach for the estimation of classi-
fication quality is a use of the accuracy, as has been said 
previously. The overall accuracy, Acc is determined as the 
number of incorrectly classified instances, or instances 
that were not classified anywhere, divided by the total 
number of instances in the learning sample. The other 
way of estimating the classification quality is by calculat-
ing the accuracy separately for every class. The accura-
cies on all classes are summed and then divided by the 
number of classes, resulting in the Ave measure. The fol-
lowing two equations are provided to formally describe 
these measures: 
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where iE  is the number of errors of the classifier for the 

i-th true class. Although the Ave measure is not the only 
one used for unbalanced datasets, it is simple enough and 
allows significant improvement in the classification qual-
ity as will be shown later. The Ave measure can be also 
used as a quality criterion in other algorithms, for exam-
ple, for algorithms that automatically design artificial 
neural networks [10; 11] or support vector machines [12]. 
Also, each part of the sum in Ave measure equation can be 
used as a separate quality criterion in a multi-objective 
algorithm for automated design of ANNs [13] or other 
machine learning techniques. The fitness function was a 
combination of three parameters – Acc or Ave value, 
number of rules and total length of all the rules in the 
base. Some other approaches apply multi-objective meth-
ods, which can be very helpful [14]. 

Algorithm testing and results. To see how the algo-
rithm performs on complex classification problems, we 
have chosen some problems from the UCI Machine 
Learning Repository [15] and used four algorithm con-
figurations: with modified class definition and without, 
with Acc and with Ave as the main quality estimation used 
in the fitness function. 

The problems on which we tested the algorithms are 
the following: 

1. Page-blocks, 5472 instances, 10 variables, 5 
classes. 

2. German credit, 1000 instances, 24 variables, 2 
classes. 

3. Phoneme, 5404 instances, 5 variables, 2 classes. 
4. Segment, 2310 instances, 19 variables, 7 classes. 
5. Satimage, 6435 instances, 36 variables, 6 classes. 
The tab. 1 below shows the number of instances for 

each class in these problems. 
To receive adequate results, we used stratified sample 

splitting into 10 folds to perform 10-fold cross validation. 
The cross validation procedure was performed three times 
and the results were averaged over all 30 runs of the algo-
rithm. The algorithm resources were the following: 100 
individuals, 500 generations, 40 rules maximum. 

The next tab. 2 shows the results for the first problem, 
the Acc and Ave values for four parameter combinations. 

When using the Acc value as the classification quality, 
the accuracies on both learning and test samples are the 
best, while the Ave values are very low. Applying the Ave 
measure significantly improves Ave values, but the accu-
racy decreases. Adding unbiased class numbering not 
only increases Ave values, but also improves the accuracy 
(tab. 3). 

For the German dataset the results are almost the 
same, but the learning and test accuracy does not change 
very much. Again, unbiased class numbering gives the 
best test Ave values (tab. 4). 

This problem is rather interesting because here the Ave 
values appeared to be higher than the accuracy for con-
figurations #2 and #4, and this is true for both the learning 
and testing samples. This can be due to the fact that the 
minority class was easier to describe for the learning algo-
rithm than the majority class, so that the accuracy on it 
was much higher. The unbiased class numbering does not 
give any advantages for this problem (tab. 5). 

Although this problem has 7 classes, all of them are 
balanced. The results show that in this case there is no 
difference in classification results for all modifications as 
the quality criteria are not sensitive to biased classifica-
tion in this case (tab. 6). 

The last problem appears to be not very sensitive to 
different quality criteria, but a slight improvement in the 
Ave measure can be tracked when using it in the fitness 
function. An important thing about this problem is that in 
most of the cases, the algorithm was not able to build any 
significantly good rule for the third class, so that it was 
always misclassified into the second class. 

To show the real classification results here we also 
provide averaged confusion matrixes for the first, second 
and fourth configurations for the test sample to show the 
difference. First, two confusion matrixes are provided for 
the page-blocks problem (tab. 7–9). 
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Table 1 

Class instances for all problems 
 

Problem/Class 1 2 3 4 5 6 7 

Page-blocks 4913 329 28 87 115 – – 
German 700 300 – – – – – 
Phoneme 3818 1586 – – – – – 
Segment 330 330 330 330 330 330 330 
Satimage 1533 703 1358 626 707 1508 – 

 
Table 2 

Results for Page-blocks problem 
 

Configuration Learning Acc Learning Ave Test Acc Test Ave 
Acc+biased 0.959 0.600 0.955 0.584 
Ave+biased 0.879 0.810 0.874 0.767 
Acc+unbiased 0.951 0.602 0.947 0.573 
Ave+unbiased 0.891 0.855 0.887 0.822 

 
Table 3  

Results for German problem 
 

Configuration Learning Acc Learning Ave Test Acc Test Ave 
Acc+biased 0.797 0.681 0.726 0.591 
Ave+biased 0.794 0.759 0.715 0.633 
Acc+unbiased 0.802 0.694 0.721 0.596 
Ave+unbiased 0.802 0.777 0.719 0.678 

 
Table 4  

Results for Phoneme problem 
 

Configuration Learning Acc Learning Ave Test Acc Test Ave 
Acc+biased 0.825 0.781 0.815 0.768 
Ave+biased 0.803 0.824 0.792 0.811 
Acc+unbiased 0.821 0.778 0.810 0.764 
Ave+unbiased 0.803 0.826 0.791 0.812 

 
Table 5  

Results for Segment problem 
 

Configuration Learning Acc Learning Ave Test Acc Test Ave 
Acc+biased 0.912 0.900 0.912 0.900 
Ave+biased 0.909 0.896 0.909 0.896 
Acc+unbiased 0.909 0.895 0.909 0.895 
Ave+unbiased 0.911 0.903 0.911 0.903 

 
Table 6  

Results for Satimage problem 
 

Configuration Learning Acc Learning Ave Test Acc Test Ave 
Acc+biased 0.837 0.756 0.829 0.748 
Ave+biased 0.838 0.767 0.830 0.757 
Acc+unbiased 0.836 0.755 0.826 0.745 
Ave+unbiased 0.837 0.763 0.828 0.755 

 
Table 7  

Confusion matrix for Page-blocks, Acc+biased 
 

 Predicted 1 Predicted 2 Predicted 3 Predicted 4 Predicted 5 Unknown 
True 1 487,26 2,80 0,06 0,53 0,60 0,03 
True 2 4,33 28,03 0,00 0,16 0,33 0,03 
True 3 1,83 0,00 0,93 0,00 0,00 0,03 
True 4 3,00 0,13 0,00 5,36 0,13 0,06 
True 5 9,83 0,00 0,13 0,00 1,50 0,03 
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Table 8  
Confusion matrix for Page-blocks, Ave+biased 

 

 Predicted 1 Predicted 2 Predicted 3 Predicted 4 Predicted 5 Unknown 
True 1 432,06 22,16 5,96 10,93 20,06 0,10 
True 2 1,36 29,66 0,30 0,43 1,13 0,00 
True 3 0,90 0,00 1,53 0,03 0,33 0,00 
True 4 0,53 0,53 0,13 6,83 0,63 0,03 
True 5 1,86 0,80 0,23 0,26 8,30 0,03 

 
Table 9  

Confusion matrix for Page-blocks, Ave+unbiased 
 

 Predicted 1 Predicted 2 Predicted 3 Predicted 4 Predicted 5 Unknown 
True 1 437,83 21,56 2,73 12,23 16,86 0,06 
True 2 1,43 29,80 0,03 0,50 1,06 0,06 
True 3 0,53 0,00 2,00 0,00 0,23 0,03 
True 4 0,30 0,13 0,16 7,43 0,63 0,03 
True 5 1,73 0,63 0,23 0,26 8,63 0,00 

 
From these tables one may see that using the Ave 

measure together with unbiased class numbering allows 
the classifying of most of the class instances correctly, 
although the accuracy on the majority class, as well as the 
overall accuracy becomes lower. From the comparison of 
tab. 8 and 9, it can be seen that although the unbiased 
procedure does not change significantly the accuracy on 
the majority class, for classes 3 and 4 there is a significant 
change in the average number of correctly classified in-
stances. 

Conclusion. In this paper an improvement for the hy-
brid evolutionary genetics-based classifier forming algo-
rithm was proposed, which allowed a significant im-
provement in testing Ave values for most of the tested 
unbalanced datasets. This improvement balances the class 
numbering procedure by adding information about the 
number of class instances so that every class has the same 
chance to be in the right side of the rule, only depending 
on the membership values. Together with the Ave meas-
ure in the fitness function, the unbalanced class number-
ing provides the most balanced results on both test and 
learning samples. Moreover, this improvement does not 
influence balanced datasets and does not change the accu-
racy on them. Further improvements for the more ade-
quate classification of unbalanced datasets for this algo-
rithm may include the using of more complex quality 
measures and the developing of an unbiased rule weight-
ing procedure. 
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