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This paper describes a modification of the self-configuring hybrid evolutionary algorithm for solving classification
problems. The algorithm implements a hybridization of Pittsburg and Michigan approaches, where Michigan part is
used together with mutation operator. The rule bases use fixed fuzzy terms, and the number of rules in the rule base can
change during the algorithm run. Also, the applied algorithm uses a set of heuristics to determine the weights and class
labels for every fuzzy rule, using the confidence values, which are calculated using the training sample. A special ini-
tialization procedure allows getting more accurate fuzzy rule bases on the first generations. The modification changes
the procedure of determining the most appropriate class number for the fuzzy rule. It uses the number of instances of
different classes, as a weighting coefficient to avoid confidence values bias. Also, we apply two classification quality
measures, the classical accuracy value and the average accuracy among classes. The modification, combined with dif-
ferent classification quality measures, allows improvement in the classification results. The self-configuring algorithm
is tested on a set of unbalanced classification problems with several classes using cross-validation and a stratified sam-
pling procedure. The test problems included image segment classification, bank client classification, phoneme recogni-
tion, classification of page contents, and satellite image classification. For one of the problems, the confusion matrixes
are provided to show the increasing balance over the class accuracies. The presented method has efficiently solved the
satellite images classification problem and can be applied for many real-life problems, including the problems from
aerospace area.
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Paccmampusaemes moougurayus camokonpueypupyemoeo cubpuoHo20 380JI0YUOHHO20 ANOpUMMA OJisl peulenus
3a0ay knaccugpukayuu. B ancopumme peanusosana eudbpuouzayus Iumcoypeckozo u Muuueanckozo nooxooos, 20e
Muuuzanckas wacmo UCROIbL3YEMCsl 6Mecme ¢ onepamopom mymayuu. bazvl npasun ucnoavzyiom guxcuposanivie ne-
yemKue mepmbl, a 4UCI0 NPAUl 8 Haze Modcem MeHsmbcsl 8 xo0e pabomvl areopumma. Taxoce npuMeHeHHbll aneo-
PpUmM UCROIb3Yem HAOOP I6PUCMUK O/l ONPedeNeHIUsl 8eCO8 U HOMEPO8 KILACCO8 OJisl KANCOO020 HEeYemKo20 Npaeuid ¢
UCNONb308AHUEM 3HAYEeHULl docmosepHocmu (confidence), komopbie paccuumvléaiomes no ooyuaioweil evioopke. Oco-
basi npoyedypa UHUYUATU3AYUY NO360I5Iem NOLYYams bojlee MouHble HewemKue 6a3bl NPABUL HA NEPEbIX NOKOJEHUSIX.
Moougpuxayus usmensiem npoyedypy onpedenerusi Hauboniee nooOX00aue20 HoMepa Kiacca OJisl He4emKo20 npasuid.
Ona ucnonv3yem yucio o0bekmos pasiuiHbIX KIdccos 8 Kauecmee 6eco8bix Kodhduyuenmos, umodwl uzdedcams cme-
wenus 3navenuti docmoseprocmu. Moougurayus 6 Kombunayuu ¢ Opy2uMu Mepamu Kauyecmesa Kiaccupurayuy no3eo-
Jslem yayuuums pesyavmamol kiaccuguxayuu. Camoxongueypupyemulii aneopumm Obli RpOmMecmuposan Ha paoe 3a-
oau Kraccuurayuu ¢ HecOAIaHCUPOBAHHLIMU OAHHBIMU U HECKOIbKUMU KIACCAMU ¢ NPUMEHEHUeM npoyedypbl Kpocc-
sanuoayuy u cmpamuuyuposannvim pazouenuem avloopku. Tecmogule 3a0auu GKAOUANU KIACCUDUKAYUIO CE2MEHMO8
uz06pasicenusi, K1ACCUPUKayuio Kuenmos 6anKkd, pacnosHaeanue Gonem, KiacCuQurayuio co0epaCUMO20 CMpanuy u
Kaaccupurayuro CHUMKO8 co cnymuuka. s oOHOU u3 3a0ay ObLIU npusedeHvl Mampuysbl OWUOOK, 01 Mo20 Ymobdwvl
NnoKasamo yeenuderue baianca moyHocmu no kiaccam. Ilpedcmagnentsiti n00X00 YCnewHo peuisl 3a0ayy Kiaccugu-
Kayuy CHUMKO8 CO CRYMHUKA U MOdcem Oblmb NpUMeHeH OJisi MHOJICECMBA PeaNbHblX 3a0a, 6KII0UAsl 3a0ayu U3 aspo-
KocMuieckoti odbaacmiu.

Kniouegvie crosa: neuemiue cucmemvl Kiaccugurxayuu, HecOarancuposanivle OanHble, I80IIOYUOHHBIN ANOPUMM,
camoxougueypuposanue.
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Introduction. Classification problems are typical
problems for data analysis, and a vast number of ap-
proaches and techniques have been proposed to solve
them. These techniques, such as, for example, artificial
neural networks (ANN), support vector machines (SVM)
and genetic programming (GP) might show very good
results on some datasets, but there are still some problems
to be resolved. These include processing big datasets with
many instances, feature selection problems, missing val-
ues, and so on. Among them, there is also the problem of
unbalanced data; it has been recently said to be one of the
main obstacles preventing good classification results [1; 2].

The imbalance in classification datasets means that the
number of instances of different classes is not the same
for all classes. For example, for two-class datasets, this
problem occurs when the number of instances of one class
is much lower than the number of instances of the other
class. The class that has more instances is called the ma-
jority class, while the other one is called the minority
class. The higher the unbalance ratio is, the more difficult
the classification problem becomes.

During the classifier learning process, especially when
learning is conducted by evolutionary algorithms, this
unbalance may lead to bias in classification results. That
means that the classifier focuses on the majority class, and
most of its instances are classified correctly, while the
minority class is classified incorrectly. The reason for this
is the learning procedure, and basically the classification
quality criterion, which in most cases is simply the overall
accuracy on the whole dataset. Although the overall accu-
racy may seem to be high, actually only the majority class
may be classified correctly, so that for unbalanced data-
sets accuracy cannot be an adequate criterion. One more
important thing is that in the vast number of real-world
problems the minority class is the class-of-interest for the
researcher; classifying it correctly is actually solving the
problem.

The known methods for dealing with unbalance prob-
lems are divided into two groups: external and internal
approaches. External approaches are used to change the
learning sample so that it becomes balanced; these ap-
proaches use some sampling methods and can be very
helpful in some situations. Yet in this paper we will focus
on internal approaches, which are used to change the
learning criterion so that it takes the unbalance ratio into
account. Moreover, we will introduce the different modi-
fied initialization procedure for the algorithm that we used
in our previous works.

Hybrid fuzzy evolutionary algorithm. The algorithm
used in this work is based on ideas by Ishibuchi [3; 4],
and the main idea of learning fuzzy classifiers from data
was presented by Wang and Mendel [5]. This algorithm
combines the Pittsburg and Michigan approaches for evo-
lutionary classifier learning so that the Michigan-style
algorithm is used as a mutation operator. We will give a
short description of the main features of this algorithm
here.

Each individual in the population is a rule base and the
number of rules is not fixed, although the maximum
number of rules cannot be exceeded. Each rule is an inte-
ger string with numbers from [0, 14], each meaning the
number of a certain fuzzy set. For each variable several
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fuzzy partitions are used as shown in picture. There are 4
partitions into 2, 3, 4, and 5 fuzzy sets. Also the “don’t
care” term is used and named as a zero fuzzy set. During
the fuzzy inference procedure the “don’t care” condition
always returned the membership function value equal
to 1, whatever the value of the variable is. There are also
possible some other approaches for setting the fuzzy parti-
tions, for example, 2-tuples representation [6].

There are two types of selection used (rank and tour-
nament), one crossover operator and three mutation op-
erators (weak, medium and strong). The tournament size
was equal to 3, and the mutation probability depended on
the number of rules in the rule base. After the mutation
operator, the Michigan part is applied to each rule base, so
that each rule in it is an individual. There are three types
of Michigan operators that could be applied to the rules in
the base. The first one adds new rules, if the size of the
rule base was not exceeded, the second deletes the worst
rules from the base, and the third firstly deletes rules and
then adds new rules into the base. Adding new rules is
performed by heuristic and genetic approaches. The heu-
ristic approach generates new rules from the misclassified
instances, and the genetic approach generates rules from
existing ones by genetic operators.

Four fuzzy partitions used in the algorithm

For selection, mutation, the Michigan part and the
type of rules adding the self-configuration procedure de-
scribed in [7; 8] is applied. This self-configuration is
based on the success rates of the operators, calculated
using the fitness improvements.

For each rule the class number and the rule weight are
calculated, and these values are not coded in the chromo-
some, but determined heuristically. The confidence value
is used in both cases so we used the approaches proposed
in [9]. During the initialization procedure, after the ante-
cedent parts of rules are set at random, the confidence
value for the new rule is calculated as follows:

zxpeCIasskqu (xp)
zp:lMAq ('xp)

where p 4, (x,) is the membership function value for

Conf (4, — Class k) =

instance x,and antecedent part 4, . In the original algo-

rithm, the class number having the highest confidence
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value was attached to the rule, but for unbalanced data-
sets, the confidence values become biased as they calcu-
late the sum of membership functions over all instances of
every class. This means that for the minority class the
confidence values can be smaller not because the rule
covers the instances of this class worse than the majority
class, but simply because the number of instances is not
balanced. This leads to the problem that most of the gen-
erated rules are tied with the majority class, although they
may describe an important part of the minority class.

To avoid this bias, a modified procedure of class
number definition is proposed, which uses the number of
class instances for every class as a weight:

Conf (4, — Class k)
-m

nmy

>

Class ¢ = arg max(
k

where m; is the number of instances in class k. This

modification is supposed to improve classification quality
and accuracy in case of unbalanced datasets. For the bal-
anced datasets, this equation does not change the results
of choosing the class number.

Acc and Ave values for estimating the classification
quality. The typical approach for the estimation of classi-
fication quality is a use of the accuracy, as has been said
previously. The overall accuracy, Acc is determined as the
number of incorrectly classified instances, or instances
that were not classified anywhere, divided by the total
number of instances in the learning sample. The other
way of estimating the classification quality is by calculat-
ing the accuracy separately for every class. The accura-
cies on all classes are summed and then divided by the
number of classes, resulting in the 4ve measure. The fol-
lowing two equations are provided to formally describe
these measures:

E;
i=0
Acc = - ys
Z m;
i=0
k .
Ave=>) ——,
isom; -k

where E; is the number of errors of the classifier for the

i-th true class. Although the Ave measure is not the only
one used for unbalanced datasets, it is simple enough and
allows significant improvement in the classification qual-
ity as will be shown later. The Ave measure can be also
used as a quality criterion in other algorithms, for exam-
ple, for algorithms that automatically design artificial
neural networks [10; 11] or support vector machines [12].
Also, each part of the sum in 4ve measure equation can be
used as a separate quality criterion in a multi-objective
algorithm for automated design of ANNs [13] or other
machine learning techniques. The fitness function was a
combination of three parameters — Acc or Ave value,
number of rules and total length of all the rules in the
base. Some other approaches apply multi-objective meth-
ods, which can be very helpful [14].
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Algorithm testing and results. To see how the algo-
rithm performs on complex classification problems, we
have chosen some problems from the UCI Machine
Learning Repository [15] and used four algorithm con-
figurations: with modified class definition and without,
with Acc and with Ave as the main quality estimation used
in the fitness function.

The problems on which we tested the algorithms are
the following:

1. Page-blocks, 5472 instances, 10 variables, 5
classes.

2. German credit, 1000 instances, 24 variables, 2
classes.

3. Phoneme, 5404 instances, 5 variables, 2 classes.

4. Segment, 2310 instances, 19 variables, 7 classes.

5. Satimage, 6435 instances, 36 variables, 6 classes.

The tab. 1 below shows the number of instances for
each class in these problems.

To receive adequate results, we used stratified sample
splitting into 10 folds to perform 10-fold cross validation.
The cross validation procedure was performed three times
and the results were averaged over all 30 runs of the algo-
rithm. The algorithm resources were the following: 100
individuals, 500 generations, 40 rules maximum.

The next tab. 2 shows the results for the first problem,
the Acc and Ave values for four parameter combinations.

When using the Acc value as the classification quality,
the accuracies on both learning and test samples are the
best, while the Ave values are very low. Applying the Ave
measure significantly improves Ave values, but the accu-
racy decreases. Adding unbiased class numbering not
only increases Ave values, but also improves the accuracy
(tab. 3).

For the German dataset the results are almost the
same, but the learning and test accuracy does not change
very much. Again, unbiased class numbering gives the
best test Ave values (tab. 4).

This problem is rather interesting because here the Ave
values appeared to be higher than the accuracy for con-
figurations #2 and #4, and this is true for both the learning
and testing samples. This can be due to the fact that the
minority class was easier to describe for the learning algo-
rithm than the majority class, so that the accuracy on it
was much higher. The unbiased class numbering does not
give any advantages for this problem (tab. 5).

Although this problem has 7 classes, all of them are
balanced. The results show that in this case there is no
difference in classification results for all modifications as
the quality criteria are not sensitive to biased classifica-
tion in this case (tab. 6).

The last problem appears to be not very sensitive to
different quality criteria, but a slight improvement in the
Ave measure can be tracked when using it in the fitness
function. An important thing about this problem is that in
most of the cases, the algorithm was not able to build any
significantly good rule for the third class, so that it was
always misclassified into the second class.

To show the real classification results here we also
provide averaged confusion matrixes for the first, second
and fourth configurations for the test sample to show the
difference. First, two confusion matrixes are provided for
the page-blocks problem (tab. 7-9).
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Table 1
Class instances for all problems
Problem/Class 1 2 3 4 5 6 7
Page-blocks 4913 329 28 87 115 — -
German 700 300 - - - — -
Phoneme 3818 1586 — - — - -
Segment 330 330 330 330 330 330 330
Satimage 1533 703 1358 626 707 1508 —
Table 2
Results for Page-blocks problem
Configuration Learning Acc Learning Ave Test Acc Test Ave
Acctbiased 0.959 0.600 0.955 0.584
Avetbiased 0.879 0.810 0.874 0.767
Acctunbiased 0.951 0.602 0.947 0.573
Avet+unbiased 0.891 0.855 0.887 0.822
Table 3
Results for German problem
Configuration Learning Acc Learning Ave Test Acc Test Ave
Acctbiased 0.797 0.681 0.726 0.591
Avetbiased 0.794 0.759 0.715 0.633
Acctunbiased 0.802 0.694 0.721 0.596
Avetunbiased 0.802 0.777 0.719 0.678
Table 4
Results for Phoneme problem
Configuration Learning Acc Learning Ave Test Acc Test Ave
Acctbiased 0.825 0.781 0.815 0.768
Avetbiased 0.803 0.824 0.792 0.811
Acctunbiased 0.821 0.778 0.810 0.764
Ave+unbiased 0.803 0.826 0.791 0.812
Table 5
Results for Segment problem
Configuration Learning Acc Learning Ave Test Acc Test Ave
Acctbiased 0.912 0.900 0.912 0.900
Avetbiased 0.909 0.896 0.909 0.896
Acctunbiased 0.909 0.895 0.909 0.895
Avet+unbiased 0911 0.903 0.911 0.903
Table 6
Results for Satimage problem
Configuration Learning Acc Learning Ave Test Acc Test Ave
Acctbiased 0.837 0.756 0.829 0.748
Ave+tbiased 0.838 0.767 0.830 0.757
Acctunbiased 0.836 0.755 0.826 0.745
Avetunbiased 0.837 0.763 0.828 0.755
Table 7
Confusion matrix for Page-blocks, Acc+biased
Predicted 1 Predicted 2 Predicted 3 Predicted 4 Predicted 5 Unknown
True 1 487,26 2,80 0,06 0,53 0,60 0,03
True 2 4,33 28,03 0,00 0,16 0,33 0,03
True 3 1,83 0,00 0,93 0,00 0,00 0,03
True 4 3,00 0,13 0,00 5,36 0,13 0,06
True 5 9,83 0,00 0,13 0,00 1,50 0,03
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Table 8
Confusion matrix for Page-blocks, Ave+biased
Predicted 1 Predicted 2 Predicted 3 Predicted 4 Predicted 5 Unknown
True 1 432,06 22,16 5,96 10,93 20,06 0,10
True 2 1,36 29,66 0,30 0,43 1,13 0,00
True 3 0,90 0,00 1,53 0,03 0,33 0,00
True 4 0,53 0,53 0,13 6,83 0,63 0,03
True 5 1,86 0,80 0,23 0,26 8,30 0,03
Table 9
Confusion matrix for Page-blocks, Ave+unbiased
Predicted 1 Predicted 2 Predicted 3 Predicted 4 Predicted 5 Unknown
True 1 437,83 21,56 2,73 12,23 16,86 0,06
True 2 1,43 29,80 0,03 0,50 1,06 0,06
True 3 0,53 0,00 2,00 0,00 0,23 0,03
True 4 0,30 0,13 0,16 7,43 0,63 0,03
True 5 1,73 0,63 0,23 0,26 8,63 0,00

From these tables one may see that using the Ave
measure together with unbiased class numbering allows
the classifying of most of the class instances correctly,
although the accuracy on the majority class, as well as the
overall accuracy becomes lower. From the comparison of
tab. 8 and 9, it can be seen that although the unbiased
procedure does not change significantly the accuracy on
the majority class, for classes 3 and 4 there is a significant
change in the average number of correctly classified in-
stances.

Conclusion. In this paper an improvement for the hy-
brid evolutionary genetics-based classifier forming algo-
rithm was proposed, which allowed a significant im-
provement in testing Ave values for most of the tested
unbalanced datasets. This improvement balances the class
numbering procedure by adding information about the
number of class instances so that every class has the same
chance to be in the right side of the rule, only depending
on the membership values. Together with the 4ve meas-
ure in the fitness function, the unbalanced class number-
ing provides the most balanced results on both test and
learning samples. Moreover, this improvement does not
influence balanced datasets and does not change the accu-
racy on them. Further improvements for the more ade-
quate classification of unbalanced datasets for this algo-
rithm may include the using of more complex quality
measures and the developing of an unbiased rule weight-
ing procedure.
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