

Математика, механика, информатика

 153

UDC 519.234

Vestnik SibGAU
Vol. 16, No. 1, P. 153–158

APPLICATION OF FINITE AUTOMATA WITH GENETIC ALGORITHMS

IN JAVASCRIPT FOR DETERMINATION OF MANPOWER SYSTEM CONTROL

A. Škraba*, D. Kofjač, A. Žnidaršič, Č. Rozman, M. Maletič

University of Maribor, Faculty of Organizational Sciences
Cybernetics & Decision Support Systems Laboratory

Kidričeva cesta, 55a, Kranj, SI-4000, Slovenia
*E-mail: andrej.skraba@fov.uni-mb.si

The strict hierarchical manpower system is modeled in the state space where the desired number of men in particu-

lar rank is determined by predefined trajectory function. The transition model is represented by the principles of System
Dynamics where each rank is represented as the state element and transition as the flow. The basis for the model is the
structure of the exponential delay chain with additional outflows from particular states. The strategy for achieving the
desired states is determined by the application of the genetic algorithms which are implemented in JavaScript as well as
the System Dynamics model. Parameter boundaries were taken into consideration which was determined according to
the historical data. Predetermination of the desired system states by the set of exponential functions reduced the opti-
mization burden. The optimization problem was defined as the minimization of the sum of quadratic difference between
desired and actual states in all ranks for the observed time horizon. Time boundaries in considered optimization prob-
lem were not constant which contributes to the complexity of the addressed optimization task. The six state finite
automaton code realization is described which prevents the oscillations in the strategies. The algorithm for integration
of system dynamics model and genetic algorithm with finite automaton is described.

Keywords: manpower system, finite automata, genetic algorithm.

Вестник СибГАУ
Т. 16, № 1. С. 153–158

ПРИМЕНЕНИЕ КОНЕЧНЫХ АВТОМАТОВ С ГЕНЕТИЧЕСКИМИ
АЛГОРИТМАМИ В JAVASCRIPT ДЛЯ ОПРЕДЕЛЕНИЯ УПРАВЛЕНИЯ

ЧЕЛОВЕЧЕСКИМИ РЕСУРСАМИ

A. Шкраба*, Д. Кофьяч, A. Жнидаршич, Ч. Розман, M. Малетич

Университет Марибора, факультет организационный наук
Лаборатория кибернетики и систем поддержки принятия решений

Словения, SI-4000, Крань, ул. Кидричева 55a
*E-mail: andrej.skraba@fov.uni-mb.si

Строго иерархическая система управления человеческими ресурсами моделируется в пространстве со-

стояний, в котором требуемое число работников определенного ранга определятся функцией предписанной
траектории. Модель переходов основана на принципах системной динамики, когда каждый ранг описывается
как элемент пространства состояний, а каждый переход – как поток. Основой модели является структура
цепи с экспоненциальным запаздыванием с аддитивными выходными потоками для некоторых состояний.
Стратегия достижения требуемого состояния определяется применением генетических алгоритмов, реали-
зованных на JavaScript, а также моделью системной динамики. Учитываются ограничения на параметры,
определенные в соответствии с предысторией. Предопределение требуемых состояний системы множест-
вом экспоненциальных функций снижает трудности оптимизации. Задача оптимизации определяется как ми-
нимизация суммы квадратичных разностей между требуемыми и реальными состояниями всех рангов на на-
блюдаемом горизонте времени. Временные ограничения в рассматриваемой оптимизационной задаче не явля-
ются постоянными величинами, что усложняет эту задачу. Описывается реализация кода конечного авто-
мата с шестью состояниями, позволяющего избежать осцилляций в стратегиях управления. Описывается
также алгоритм, интегрирующий модель системной динамики и генетический алгоритм с помощью конечно-
го автомата.

Ключевые слова: управление человеческими ресурсами, конечные автоматы, генетический алгоритм.

Вестник СибГАУ. Том 16, № 1

 154

Introduction. Controlling of hierarchical manpower
system such as military is demanding task [1–6] since the
control problem includes several stochastic variables
which should be considered, such as time variant bounda-
ries on recruitment, promotions, retirements and wast-
ages. The paper describes the methodology which was
developed for the Slovenian Army restructuring [1; 7]
where the new numbers of officers in the highest eight
ranks should be determined. Due to the new standards, the
new ratio should be established between the number of
officers and number of soldiers. The structure of the sys-
tem is shown in fig. 1. The system is modelled as the cas-
cading exponential delay with the outflows as the wast-
ages, i. e. fluctuations from the army. The input u(t) to the
system represents recruitment which influences the inflow
R0 to the first element x1 which represents the level of the
first rank (x1) members (lowest rank). According to the
promotion factor r1 the transitions from rank x1 to rank x2
are made. The fluctuations from the rank x1 are deter-
mined by the number of the x1 rank members and the fluc-
tuation factor a. Outflow element FA represents the wast-
age, i. e. the case where the member of the rank leaves the
army. This structure is repeated arbitrarily however in our
case eight ranks were considered. The system also does
not allow for direct input to the particular rank x; the way
to the higher ranks is only possible to the recruitment to
the first rank, x1 therefore the system is strict hierarchical.
In order to define the dynamics of the system the discrete
state space is applied in the form x(k + 1) = Ax(k) + Bu(k)
[1]. State vector x represents the number of men in par-
ticular rank whereas matrix of coefficients A represents
promotion factors r and wastage factors f. The only input
to the system is recruitment represented by the Bu(k) term
in the discrete state space.

In order to restructure the army manpower system, the
recruitments, promotions, wastages and retirement should
be determined in such a way, that new, desired numbers
of man in particular rank x are achieved in minimal time.
The solutions should not exercise the oscillations since
this would lead to the undesired adaptation of training
facilities and number of instructors. Another limitation
that should be considered, is that the number of recruit-
ments, promotions, wastages and retirement should not
deviate significantly from the average numbers in previ-
ous 10 years. The novelty of the approach is twofold, on
one side, the manpower system is modelled by the System
Dynamics methodology, which is easy to understand, on
the other side, the model is integrated with the Finite
Automata in order to avoid the undesired oscillations in
the strategy. Besides, we have developed technical reali-
zation of the system in JavaScript which provides new
opportunities to apply the developed algorithm in the
cloud as well as in the embedded devices [8].

Methodology description. For each rank x, the de-
sired number of man is stated by the Human Resource
department in the Slovenian army. This were only the
final numbers of men that should be achieved in particular
ranks x. Since the system is described by the model of
exponential delay chain, it is anticipated, that the transi-
tions will follow exponential functions. By anticipating
the system response, the optimization burden could be
reduced by the predetermination of the trajectories for
states x. The response of the system will be exercised as
the exponential approach to the goal values. By the de-
termination of the desired response function one can

reduce the optimization search space [9; 10]. In our case
we defined the desired response by the function, describ-
ing the way in which the number of men in particular rank
x should be reached. The following function has been
defined:

 0()()
() = ,pki i

i
i

x x k k
f k x e

k
 

 (1)

where 0x , ix represent initial and final value of the state

variable x, ik is terminal time; k is simulation time and
[0,]p  is importance factor which determines the rate

by which the goal is reached. The optimization problem
where we want to achieve the desired values, marked with
z in the equation (2) considers the minimal distance to the
desired values function defined by equation (1):

, , =1

min = (() ()) G(() ())
tq

T

u r f k

J k k k k  z x z x (2)

subject to

() () (),

() () (),

() () (),

LB UB

LB UB

LB UB

k k k

k k k

k k k

 
 
 

u u u

r r r

f f f

 (3)

where G is time-invariant diagonal matrix of weights
reflecting the importance of holding deviations for rank
n as small as possible; ()kz represents the goal trajec-
tory of the system defined by equation (1); tq is terminal
time; ()LB ku and ()UB ku vectors of lower and upper

boundary for recruitment in rank 1x , respectively; ()LB kr

and ()UB kr vectors of lower and upper boundary for tran-
sitions r between ranks x, respectively (as well as output
of the system from the last rank nx); and ()LB kf and

()UB kf vectors of lower and upper boundary for fluctua-
tions, i. e. wastages from rank x , respectively. Note that
all boundaries are time dependent, which increases the
complexity of the addressed optimization problem.

Described optimization problem should be augmented
by the rule, that the gained strategy should not exercise
undesired oscillations [1]. If, for example, the recruitment
would oscillate e. g. between 0 and 1000 men/year this
would mean, that one should adapt the recruitment facili-
ties accordingly, which would not be desired. In order to
get the proper strategies, not exercising the oscillations,
the six state automaton A is defined which identifies the
strategies with undesired oscillations in flows between
state variables, where the set of states is

0 1 2 3 4 5= { , , , , , }S S S S S S S , the comparison alphabet

= { , , }A g e l , the initial state is 0=i S and the set of end

states is 0 1 2 3 4= { , , , , }T S S S S S . The transition function
of A , : S A S   is defined by the table.

Six state automation transition table

 g l e

↔ S0 S1 S2 S0
← S1 S1 S3 S1
← S2 S4 S2 S2
← S3 S5 S3 S3
← S4 S4 S5 S4
← S5 S5 S5 S5

Математика, механика, информатика

 155

R0 R1

x1

r0

r1 r2 r3 r4

x2 x3 x4

R2 R3 R4

FA FB FC FD

a c db

canonical
form

Input u(t)

wastage

promotion

recruitment

Fig. 1. Structure of the System Dynamics model of manpower system

function automaton(r) {

var t = 1; // starting value for t is set to 1
 for (var i=0; i<r.length; i++) { // loop goes from 0 to string length

 if (t==1) { // at the starting case t=1
 if (r[i+1] < r[i]) { // the value in the next step is lower than at present; going down
 t = 2;
 }
 if (r[i+1] > r[i]) { // the value in the next step is higher than at present; going up
 t = 4;
 }
 }
 if (t == 2) { // if t=2, it means, that in the previous step we went down
 if (r[i+1] > r[i]) { // and at the next step, we went up
 t=3;
 }
 }

 if (t == 3 && r[i+1] < r[i]){//we went once down and once up and at the next step again down
 t = 0;
 break; // forbidden combination i.e. oscillation in the control strategy
 }

 if (t == 4) { // we went up in the previous step

 if (r[i+1] < r[i]) { // and go down in the next step
 t=5;
 }
 }

 if (t == 5) { // if value is first up and then down
 if (r[i+1] > r[i]) { // and if we go up again at the next step
 t=0; // we get forbidden combination
 break;
 }
 }

if from the beginning of the loop till the end no condition is fulfilled t does not change;
meaning r[i+1] = r[i]

 }

if (t==0) {
t=10; // we set return value as 10, which is the multiplication factor
}
else {t=1;} // if there were no forbidden moves, the value of the return multiplication factor is 1
return t;
}

Fig. 2. Finite automata code realized in JavaScript

Вестник СибГАУ. Том 16, № 1

 156

The described automaton in table A is defined by the
following code in JavaScript, which is shown in fig. 2. All
the possible states are checked by the set of conditional
clauses. Description in the code provides the explanation
of particular parts.

Realization of the system is shown in the fig. 3 [11].
The system consists of the GA part as well as of simula-
tion part. Initially, the reading of the values from the
Graphical User Interface (GUI) is performed. The system
main loop is started, following the conversion of decimal
values to binary values since the algorithm works on the
converted binary numbers. This is needed, since the pa-
rameters are from continuous number set. In the next step
the computation of the Fitness Function (FF) is per-
formed. The input vector for the simulation model is pre-
pared and simulation is started for the prescribed number
of simulation time steps. At each new simulation run the
model is reset. After simulation stop time is reached, the
results are either evaluated with FA in order to punish the
oscillations or not, which is also one of the options. After
the simulation is performed, the minimum and maximum
in the population is determined. The fitness vector is then
normalized in order to use it at the roulette wheel selec-
tion for the new population generation. The crossing of
the genomes follows with the elitism selection in order to
transfer the best solution to the next population. After the
new matrix is formed the mutation is done. In the next
step the output of the results is provided. The Main Loop
then continues until the final number of steps in the opti-
mization procedure is achieved. In the next step the
elapsed time is printed out as well as results and corre-
sponding graphs.

Fig. 4 shows example of the results comparing the de-
sired trajectory and achieved solution for three ranks. The
optimization was run with the population of size 10, mu-
tation rate 0.01 with applied FA for 250 timesteps. The
optimization time was 206s. The time could be signifi-
cantly improved by the decreasing the size of the popula-
tion, for example the run with the population size 3 would
take 35s providing similar results however, the conver-
gence of the optimization should also be considered.

Since the mobile devices are limited in the processing
power, we have investigated the influence of the
population size to the convergence of the optimization
procedure. We have applied three different sizes of
population, 2, 5 and 10 and perform four optimization
runs for each. Fig. 5 shows the average value of the
fitness function for different population size. Value 0
would mean 0 deviation from the desired values. One can
observe, that the population of size 5 or 10 provides
approximately the same convergence however, the
population of size 3 converges rather slowly.

Nevertheles, the average time of the optimization is
significantly different; for Population of size 3 the
optimization time is 36s, for Population of size 5, 116s
and Population of size 10 228s. Therefore the smaller
population size might lead to acceptable solutions quicker
however, too small population would converge rather
slowly.

Start
Main Loop

Init

convertBinaryToDecimaWithBoundaries()

resetModel()

timeStep()

fitnessFunction()

Reading of the values
from GUI, initialization of
initial binary matrix

Provide output
graphs (multiple)

Output of the
resutlts to the GUI

Simulation
stop time
not reached

Computation
of Fitness Function
FF

Determination of
input vector for
Fitnes Function and
simulation

Simulation
stop time
reached

FA Applied

Final #Steps not reached

FA Not Applied

FFcompute() computeFFwithFA()

findMinMax()

normalizeFitnessVector()

mutate()

grafX.draw()

End

rouletteWheelProbabilities()

crossEntireMatrixWithElitism()

timePrintOut()
resultsPrintOut()
drawResume()

Fig. 3. GA with included SD simulation model
and optional FA for elimination of oscillatory solutions

Realization of the optimization system. The proto-

type realization of the SD manpower transition model
with GA as well as finite automaton was done in
JavaScript. The speed of the solution search depends on
the mobile device applied which is satisfactory for the
smaller problems. Important aspect here is, that the model
with the optimization could easily be accessed and ap-
plied in the cloud. Fig. 6 shows actual screenshot of the
realization of the Genetic Algorithm with Finite Automa-
ton in JavaScritpt running on the mobile phone. One
could observe the call of the code from the server mean-
ing, that the same code could be distributed and used on
any mobile device running JavaScript. This includes all
modern mobile phones as well as other smart devices
such as Smart TVs etc. This is convenient for the easy
application of the system for the determination of man-
power strategies with various simulation models [12–15]
not only from the field of manpower management. There
are also other benefits, for example possibility of devel-
opment of parallel algorithm on embedded devices with
the node.js technology [16]. Since the mobile devices are
limited in processing power, the code could also be run on
the server which would significantly improve the time
performance of the system.

Математика, механика, информатика

 157

0 0 0

100
85

50

Desired
Actual

Desired
Actual

Desired
Actual

Fig. 4. Example of the results comparing the desired trajectory and achieved solution

Fig. 5. Results of the experiment with different population sizes (10 – left, 3 – right)

Fig. 6. Realisation of the Genetic Algorithm with Finite Automaton
in JavaScritpt running in the browser

Вестник СибГАУ. Том 16, № 1

 158

Conclusion. Application of the prescribed trajectory
function provided the reduction of the optimization prob-
lem of searching for the proper strategy in hierarchical
manpower system. Here we assumed the exponential ap-
proach to the desired states. The addition of the described
finite automaton was efficient at the elimination of strate-
gies that examined oscillations. The implementation of
the model as well as genetic algorithm with finite auto-
mata was successfully performed in JavaScript providing
several benefits at the implementation, especially possi-
bility to easily run the same code on the server, in parallel
or on the embedded devices. Performed experiments show
that careful selection of the population size might lead to
better time performance of optimization.

Directions of the future research include an automa-
tion of the optimization procedure adjustment through the
genetic algorithm self-configuration [17; 18] or the use of
the swarm optimization cooperative method [19] as well
as the automated identification of the dynamic system
from the description of their state [20].

References

1. Škraba A., Kljajić M., Papler P., Kofjač D., Obed

M. Determination of recruitment and transition strategies.
Kybernetes. 2011, vol. 40, no. 9/10, p. 1503–1522.

2. Mehlman A. An approach to optimal recruitment
and transition strategies for manpower systems using dy-
namic programming. Journal of Operational Research
Society, 1980, vol. 31, no. 11, p. 1009–1015.

3. Semenkin E., Semenkina M. Stochastic Models
and Optimization Algorithms for Decision Support in
Spacecraft Control Systems Preliminary Design. Infor-
matics in Control, Automation and Robotics, Lecture
Notes in Electrical Engineering. 2014, vol. 283, p 51–65,
Springer-Verlag Berlin Heidelberg.

4. Akhmedova S., Semenkin E. Co-operation of biol-
ogy related algorithms. 2013 IEEE Congress on Evolu-
tionary Computation, CEC 2013, p. 2207–2214.

5. Bavec B. Web Realization of Genetic Algorithms
for Determination of Control Strategies on Hierarchical
Manpower Model. Master Thesis. 2013.

6. Reeves G. R., Reid R. C. A. military reserve man-
power planning model. Computers & Operations Re-
search. 1999, vol. 26, p. 1231–1242.

7. Škraba A., Koložvari A., Kofjač D., Stojanović R.
(2014) Prototype of speech controlled cloud based wheel-
chair platform for disabled persons. IEEE Embedded
Computing (MECO), 2014 3rd Mediterranean Conference
on. DOI: 10.1109/MECO.2014.6862683.

8. Node.js. Available at: http://nodejs.org/ (Accesed:
7.11.2014).

9. Rozman Č., Pažek K., Kljajić M., Bavec M.,
Turk J., Bavec F., Kofjač D., Škraba A. The dynamic
simulation of organic farming development scenarios–A
case study in Slovenia. Computers and Electronics in
Agriculture. 2013, vol. 96, p. 163–172.

10. Škraba A., Kljajić M., Kljajić M. B. The role of
information feedback in the management group decision-
making process applying system dynamics models. Group
Decision and Negotiation. 2007, vol.16, no. 1, p. 77–95.

11. Škraba A., Kljajić M., Leskovar R. Group explora-
tion of system dynamics models – is there a place for
a feedback loop in the decision process? System Dynamics
Review. 2003, vol. 19, no. 3, p. 243–263.

12. Kljajić M., Bernik I., Škraba A. Simulation ap-
proach to decision assessment in enterprises. Simulation.
2000, vol. 75, no. 4, p. 199–210.

13. Giles K. 2006. Where have all the soldiers gone?
Russia's military plans versus demographic reality.
CSRC, ISBN 1-905058-92-6.

14. Kilaz I., Onder A., Yanik M. Manpower Planning
and Management in Cyber Defense. Proceedings of the
13th European Conference on Cyber warefare and Secu-
rity: ECCWS 2014. Eds.: Liaropoulos A., Tsihrintzis G.
Academic Conferences Limited.

15. Armenia S., Centra A., Cesarotti V., De Angelis
A., Retrosi C. Military Workforce Dynamics and Plan-
ning in the Italian AirForce. Proceedings of the 30th In-
ternational Conference of the System Dynamics Society,
July 22–26, 2012, St. Gallen, Switzerland.

16. Škulj D., Vehovar V., Štamfelj D. The modelling
of manpower by Markov chains – a case study of the
Slovenian armed forces. Informatica. 2008, vol. 32, no. 3,
p. 289–291.

17. Semenkin E., Semenkina M. Self-configuring ge-
netic programming algorithm with modified uniform
crossover. IEEE Congress on Evolutionary Computation
(CEC 2012). 2012. P. 6256587.

18. Semenkin E., Semenkina M. Self-configuring ge-
netic algorithm with modified uniform crossover operator.
Lecture Notes in Computer Science. LNCS 7331. Part 1.
2012, p. 414–421.

19. Akhmedova S., Semenkin E. Co-operation of
biology related algorithms. IEEE Congress on Evolution-
ary Computation (CEC 2013). 2013, p. 2207–2214.

20. Ryzhikov I., Semenkin E. Evolutionary strategies
algorithm based approaches for the linear dynamic system
identification. Lecture Notes in Computer Science. 2013,
vol. 7824 LNCS, p. 477–484.

© Škraba A., Kofjač D., Žnidaršič A.,
Rozman Č., Maletič M., 2015

