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We consider the task of reconstruction of the regression function from observations with errors. Under parametric
uncertainty conditions this problem is solved in the following sequence: first the type of regression function with accu-
racy to parameters is set, then the next stage is the estimation of these parameters based on training sample elements.
The main problem that arises is choosing a parametric structure, i. e. the choice of parameters with an accuracy to the
vector of parameters. At the same time more or less inaccuracy can be allowed, descriptions of many variables func-
tions with accuracy to parameters cause particular difficulties. Another known way of solving such problems, which is
the nonparametric estimation of regression function from observations, in this case the stage of choosing a parametric
equation of the regression function is missing. A number of publications is devoted to this area including monographs
where the results are in most cases related to the asymptotic properties of the regression function.

The article considers the task of reconstruction of mutually ambiguous functions of many arguments from observa-
tions with random errors in the conditions of nonparametric uncertainty. This problem has been insufficiently studied,
although it has a significant importance in the identification and control of objects of a Wiener and Hammerstein class.
The control theory widely uses already known mutually ambiguous specifications that describe the work of items with
a loop of hysteresis, backlashes and others. Some modifications of nonparametric estimates of mutually ambiguous fea-
tures including multidimensional are given. A series of computing experiments have been conducted where for simplic-
ity reasons the simpliest mutually ambiguous curves were taken, parametric structure of these curves for the algorithms
was unknown, only observation was known. Numerical studies covered two cases: different sample sizes and various
disturbances affecting the studied processes. The reconstruction of mutually ambiguous dependency plays an important
role in the development of robots and various robotic systems moving on in an undefined or unknown terrain. As sepa-
rate blocks the considered algorithms can be useful in devices that are used in the aerospace industry.
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Paccmampusaemcs 3a0aua soccmanognenus QyHKyuy peepeccuu o HabaOeHUsM ¢ owubkamu. B ycrosusx napa-
MempUuuecKoll HeonpedeieHHOCHU 9MA 3a0a4a peuaemcs 8 cledyiowel NOCIe008ameNbHOCMIL: CHAYAIA 3a0aemcsi U0
yHKYUU pespeccul ¢ MOYHOCMbIO 00 NAPAMEMPOS8, HA CeOVIOWeM dIMane 0Cyuwecmeusiemcs OYeHKa IMUX napament-
P08 Ha 0cHOBe dlieMenmog oOyuaroueti 6bloopru. OcHosHAsL NPobeMa, KOMOpasl 30eCb GO3HUKAEN, COCIOUN 6 8blOope
napamempuyeckol cmpyKkmypol, m. e. 6 bl00pe napamempos ¢ MOYHOCMbIO 00 GeKmopa napamempos. Ilpu smom
Modicem 6vlmb OONYUWeHa OObULAsL U MEHbLUUASL HEMOYHOCTD, ONUCAHUE PYHKYUIL MHOSUX NEPEMEHHBIX ¢ MOYHOCHIbIO
0o napamempos 8vi3vlgaem onpeoeieHHvle mpyonocmu. Mzeecmen opyeou nymo peuierus no006HOU 3a0ayu, KOMOopblii
cocmoum 6 HenapamempuyecKkomM OYeHUSAHUU QYHKYUU pezpeccur no HAOIIOO0eHUsIM, 8 IMOM Ciyuae sman evloopa
Napamempuyecko2o ypagHeHus OYHKYuY pespeccui omcymcemeyem. Imomy HanpasieHuro OCSsueHo 60aboe KO-
uecmeo nyOnuUKayull, 6KI0YAs MoHozpaduu, 20e 6 DONbLUUHCMGE CIYYaed U3NASAlOMCsl Pe3yIbIambl, CEA3aAHHbIe
€ ACUMNMOMUYECKUMU CEOUCTNBAMU HENAPAMEMPULECKUX OYEHOK (PYHKYUU pecpeccul.

Paccmampusaemcs 3a0aua 60ccmanogienus 63aUmMHO HEOOHO3HAYHOU PYHKYUU MHOSUX APSYMEHMO08 No Hab.iode-
HUSIM CO CIYYAUHBIMU OWUOKAMYU 8 YCIOBUAX HEeNapamempuieckol Heonpeoeiennocmu. Jaunas 3a0aua uccie0o8ana
HeQOCMAamoyHo, XOms U UMeen CYUeCmeeHHOe 3HAYeHUe Npu UOeHMUDUKAYUU U Ynpasienuu 00beKmamu Kidacca
Bunepa u TI'ammepwmetina. Teopus ynpagienus wupoxko UCHOIb3YEM YiCe U3BECHHblEe 63AUMHO HEOOHO3HAYHble
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Xapaxmepucmuku, Komopule ORUCbIBAiom pabomy 21eMeHmos ¢ nemiel eucmepesuca, 1o@mog u op. Ilpusedenvl He-
KOmopule MOOUPUKAYUU HENAPAMEMPUYECKUX OYEHOK B3AUMHO HEOOHOHAYHBIX (DYHKYUL, 8 MOM YUCIE MHO2OMEPHDIX.
Taxoce nposedena cepust BbIYUCTUMENbHBIX IKCHEPUMEHMO8, 8 KOMOPbLIX U3 CO0OPANCEHUSI NPOCMOMbL ObLIU 3AMbl
Hauboiee npocmvle 83aUMHO HeOOHO3HAUHbIE KpUsble, NAPAMempuiecKdas CIMpyKmypa Smux Kpugblx O0is ajieopummos
OblLIa Heu38eCmHa, a U3BECMHO MOAbKO HabwOeHue. HucienHvle UCCIe008AHUS 0X8AMbBIBANU 08A CIYYAS: DA3TUYUHbIE
00beMbl 8bIOOPKU U PA3IUYHBIE YPOBHU NOMeEX, 0elicmeYIoWUX Ha ucciedyemsle npoyeccvl. Boccmanosnenue 83aumno
HEOOHO3HAYHOU 3aBUCUMOCIU USPAem BANXCHYIO POJb NPU paspabomke poOOMOE U pa3iuuHbIX pOOOMOMEXHUYECKUX
cucmem, OBUNCYUUXCS NO 3apanee He ONpedeeHHOMY U HeuzsecmHoMmy peaved)y. B kauecmee omoenvhvlx O10K08
paccmampusaemvle ar2opumMbsl MO2Ym Oblmb NOJLE3HbL 8 YCMPOUCMBAX, UCHONIL3YEMbIX 8 A3POKOCMUYECKOU OMpPaciu.

Knioueswvie cnosa: anpuopHas qubopMauuﬂ, Henapamempudeckas MOO@JZb, 83AUMHO HEOOHO3HAUHbLE xapakmepu-

CMUKU, Henapamempuieckue OYyeHKu.

Introduction. The problem of function reconstruction
from observations when the studied process is described
by mutually ambiguous characteristics is considered. This
task comes to a problem of approximation, the main
feature of which is the lack of aprior information about
a parametrical structure of the studied process model.
Nonparametric estimation of mutually ambiguous charac-
teristics, some modification and results of numerical studies
are offered.

At reconstruction of regression functions from obser-
vations nonparametric estimates are often used. At the
same time it is supposed that the nature of its dependence
is unambiguous on an argument. Hereafter, the problem
of function reconstruction from observations at mutually
ambiguous dependence is considered. This demanded the
introductoin of some changes into the known estimation
of Nadaraya-Watson [1].

Aprior information. Aprior information — a set of
known in advance data of the studied process, criteria
of optimality and restrictions. The criterion of optimality
expresses those requirements which have to be best satisfied
and restrictions define our opportunities. Thus, the aprior
information known to the researcher at an initial stage is a
basis for a mathematical formulation of the task [2]. And
in essence substantially predetermines a research method [3].

In various computer systems of modelling an impor-
tant role belongs to reconstruction of functions from ob-
servations, in particular to mutually ambiguous function
which can be applied at creation of, for example, robots,
robotic systems moving on in an unknown area (the area
with an unknown terrain).

The levels of aprior information are important during
the modelling and control of discrete continuous process-
ses. The processes proceeding continuously in time but
the variables of which are controlled at discrete time
points are related to such processes. Let us point out the
following levels of aprior information [4]:

1. Systems with full information. In this case an op-
erator of the process is exactly known, and the casual dis-
turbances affecting an object and connection channels are
absent. During the solution of identification and control
problems, the methods of mathematical theory of opti-
mum processes and also other methods of synthesis and
analysis of control systems can be used.

2. Systems with incomplete information. These are
systems with independent (passive) accumulation of
information. In this case, the effect of input influence
is perceived as simply random influence. Disrurbances are
usually assumed in the theory of stochastic systems as
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random impact on an object. Besides, the class of opera-
tors is not known exactly but the assumptions of density
of distribution of all random factors are necessary. The
density of probability of random factors affecting an ob-
ject and in channels of variables measurement are usually
assumed normal and additive. It is clear that in this case
the existence of selection of input and output variables of
an object is necessary and observations are statistically
independent. Systems with incomplete information are
related to the class of open or neutral systems.

3. Systems with active accumulation of information.
The characteristic of these systems is that problems of
identification and the task of control can be integrated
because sample units of measurements consistently come
to the training model and a control system. Thus in case
of association of these tasks, the elaboration of control
impacts has ambivalent (dual) character — they have to be
both exploring and controlling [2; 3]. However if the dis-
turbances operating the process are additive in channels of
measurement as well, then in general the system of dual
control can become open, its rate of information accumu-
lation does not depend on values of input variables. Such
systems are called leading to open or neutral. But there
exists a class of non-neutral systems, i. e. a class of irre-
ducible systems.

4. Systems with parametric ideterminacy. A paramet-
ric level of aprior information assumes the existence
of a model parametrical structure and some characteristics
of random disturbances, such as zero mathematical expec-
tation and limited dispersion which are usual. For estima-
tion of parameters various iterative probabilistic proce-
dures are used more often. Under these conditions the
problem of identification in narrow sense, as well as in all
previous cases, is also solved.

5. Systems with nonparametric uncertainty. A non-
parametric level of aprior information does not assume
the existence of a model but demands the existence of
some data of qualitative character about the process, for
example, unambiguity or ambiguity of its characteristics,
linearity (for dynamic processes) or the nature of its
nonlinearity. Methods of nonparametric statistics are ap-
plied to the problem of identification at this level of aprior
information solving (identification in a broad sense [5]).

6. Systems with parametric and nonparametric uncer-
tainty. From the point of view of practice, the tasks of
identification of multivariable systems under conditions
when the volume of initial information does not correspond
to any of the above described levels are important. For
example, for separate characteristics of a multivariable
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process on the basis of physical-chemical and energy
regularities, a law of conservation of mass, balance ratios
parametrical regularities can be deduced, but for others
can not be deduced. Thus, we are in the situation when
the task of identification is formulated under conditions
of both parametric and nonparametric aprior information.
Then models represent the interdependent system of pa-
rametric and nonparametric ratios.

Nonparametric approach. Nonparametric estimates

of probability density of p(x) from observations x;,i =1,s
are the basis of this approach. Nonparametric estimates
of multidimensional probability density were considered
in [1; 6] in details and are given as:

P -ty Lo 22| 1)
S C C.

i-1%s j=1

where Py(x) — estimation of density of elements distribu-
tion; s — sample size; k — a vector lenth x.

Here ®(v) — a kernel — the finite bell-shaped function
integrating with a square which satisfies the conditions
[1;4;6]:

0<dV) <o Yven(), ij@[x_x"jdle,
c, c

s

lim,1_,wicb(x_xij=6(x—xi), )
CS CS

where ¢; — a blurring parameter defining the size of the
carrier and “delta-shape” of a kernel @(v) [4].

In a computing experiment the bell-shaped functions
@(v) of different types are used, for example:

0.5, V<1,
0, p|>1.
1=, <L,
0, >L
0.751-v)%, V<1,
0, v >1.

Rectangular kernel: ®(v) = {

Triangular kernel : ®(v) = { 3)

Parabolic kernel: ®(v) = {

In fig. 1, 2 function ®(x/c,)/c; constructed for three
values of a blurring parameter ¢, = 0.2, 0.4, 0.6. is pre-
sented.

a1
hs o)

| Cs
| cs=0.2

[e=1]

Fig. 1. Parabolic kernel

Puc. 1. ITapaGonuyeckoe aapo
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The blurring parameter ¢, meets the following condi-
tions:

¢, >0, lim,__ s(c,)f =0, lim,__ ¢, =0. (4)

§—>0 §—>0 s

Nonparametric estimation of regression function
from observations. For reconstruction of function of
regression of M{y|x} from observations {x;y;,i=1,s } we

use nonparametric estimates of density of probability (1).
As, M{y|x} looks as follows:

I yp(x, y)dy
M =29 5
Wlx [ pends ©)
Q(»)

Replacing in (5) p(x,y) by nonparametric estimates (1)
and using property:

s a(y)

s

it is easy to receive nonparametric estimation of function
of Nadaraya—Watson regression which for a one-
dimensional case looks as follows:

Y (x) =+

RN )
1)

s k X.—Xx
vil @ : :
Y. (x) = —, (3)
sk X;—x
[To~
i=1 j=1 Cs

where x;, y;, i = 1,_s sample of observations; ®(v) — a bell-
shaped function; v — unspecified variable; ¢, — a blurring
parameter.
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=W
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Fig. 2. Triangular kernel

Puc. 2. TpeyronbHoe sapo
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At reconstruction of mutually ambiguous function
of regression Nadaraya-Watson’s estimation has to be
changed as follows [7; 8]:

Ys(xz) =
iy_q) X X ) X1™ Xiey @ Yie1 = Via
_ =l l Cs Cs Cs
iq)[xt X J(D(xtl_xil jq)[ytl _)’i1]
cS cS cS

i=1
where x, |, y, 1 values of coordinates of regression func-
tion on the previous step of its estimation.

As numerous computing experiments showed it is
worthwhile (7) to correct a bit as follows:

Ys(xt):
)

Zyl ( t )q)o[xz 1~ i-1}bo(
_ Cs Cs

Zq)(xz X j(DO [xtl_ Xi-1 jq)o (ytl —Ji-

i=1 Cs Cs Cs
where ®°(v) with an accuracy to coefficient repeats ®(v),
and ®°(v) = 1, if v < 1 and 0 in other cases. In this case
®°(v) will not affect a reconstruction error but will allow
“to record” an algorithm in the previous point of the
movement at estimation of every subsequent point. If X
vector of dimension of k: (xy, ..., x;) € R", the training
sample in this case is: x;;, ..., X, Vi, i =1,5. At reconstruc-

tion of mutually ambiguous function of regression non-
parametric estimation has to be changed as follows:

i
_1 11 =1
.
il j=1 =1

where ¥, |, ¥/, values of coordinates of regression func-
tion on the previous step of its estimation.

> 9)

Yol = Vi

Cs

» (10)

Nonparametric estimation (11) can be modified as fol-

lows:
yiﬁq)o (xjt _le_ Jﬁq)o [xj t—l_xji—l JX
d Jj=1 cs j=1 cs
i:lX (I)O[yt -1~ Vi1 J
Cy
Y(x,)= . (12)

i=1
x@°
CS
where ®°(v) is same as above.

A computing experiment. First, we will consider
some ideas of the control theory. The key feature is that
the existing theory of control needs to present the object
equation with an accuracy to a vector [9—11]. Proceeding
from it, regulators can be synthesized: adaptive, self-
adjusting and others [12; 13]. At application of the opti-
mum theory of control [2; 14; 15] getting the regulators
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corresponding the given control task is possible. Blocks
with the basic purpose of reconstruction of mutually
ambiguous characteristics according to the experimental
data can occur to be a constituent of the received control
systems. We give the results of some computing experi-
ment for a similar element of system below, exactly, the
reconstruction of mutually ambiguous characteristics
from observations. When carrying out a computing
experiment mutually ambiguous characteristics can have
various shapes: circles, ellipses and others. Without viola-
tion of generality, we will accept mutually ambiguous
characteristic of dependence y(x) (for simplicity reasons)
in the shape of a circle:

(13)

x2+y2=r

where 7 — a circle radius.

In this case the training sample was formed in the fol-
lowing way: the initial point x" was set on a random basis
and y'(x) was calculated according to (13). As a result,

the sample x;, y;, i =1,5 was formed. Note that x; could be
defined as a result of a stable step Ax on x € €X(x) or of

a random number detector x; € Q(x),i = 1,_s During the

process of computer research other mutually ambiguous
characteristics of dependence y(x) were also used.

At reconstruction of mutually ambiguous characteris-
tic from observations unknown to the researcher, the
question of the choice of the direction of movement is
important, though, in principle, it can be arbitrary at an
initial stage. But all subsequent changes of the current
variable x are in rigorous dependence of the previous one.

The processes characterized by mutually ambiguous
dependences have such feature that values x, = 1,2...
appear strictly sequentially in this or that direction. In fig. 3
such process is presented. Let, for example, on the first
step of x = xy, then x, etc. Values x, appear only after x,
that is “movement” x, in the arbitrary direction takes
place. Emergence of values begins at some point of x,
and moves sequentially, passing points f,, ;. At the same
time transition of x;, for example, to xs is impossible until
the previous four points are passed. Thus, the entity of the
offered estimates (9), (10), is that at estimation of the next
point, “fixing” to the previous point in the corresponding
algorithms takes place (9), (10).

In fig. 3 the process representing a circle is given. The
movement along a variable happens from right to left and
from left to right, what characterizes serial emergence
of sample values.

On the following step random impact of 4 from
observations y; was added

hi :lyiE.w

1], disturbances level / =0,5,10 %.

As a criterion of accuracy of nonparametric estimation
the ratio was used:

(14)

where £ e[-1,

Zly, P )|

S

2

i=1

(15)

=5
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S
where ;:lz y; — arithmetic mean; y,(x;) — nonpara-
i=1
metric estimation; y; — true sample received according
to a formula (13).

We will give the results of a numerical research illus-
trating effectiveness of an algorithm. As a bell-shaped
finite function the triangular kernel was used. The algo-
rithm was tested on the training samples of various sizes,
at the same time serial increase in a sample size was per-
formed by addition of new elements to already available:
s =150, 100, 500.

In all drawings we designate figure (1) — the training
sample, (2) — nonparametric estimation.

The operation of an algorithm (9) in fig. 4-6 under
various conditions is shown: when the sample size

Vi

is equal to 50, 100, 500 elements; the disturbances level
is equal to 0 %; the experiment was conducted in the
mode of the sliding examination.

In fig. 7 the dependence of an error values of recon-
struction of size at various disterbance levels is presented.

In computing experiments other mutually ambiguous
characteristics were also used. Some fragments of a re-
search are given below. In fig. 8, 9 the experiment under
various conditions was conducted: the sample size is
equal to 100, 200 elements; the disturbance level is equal
to 0 %; the experiment was made in the mode of the slid-
ing examination.

In fig. 10-15 it is well visible how the error of recon-
struction depends on a disturbance level and on a sample
size for a circle and for amore composite figure.

Fig. 3. This sample is presented

Puc. 3. [IpencraBnena naHHas BBIOOpKa

T.":
15 ¢
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0§ 0 i
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5 ¥
~15 =10 -5 o 5 10 15

Fig. 4. §=50; w=0.1098

Puc. 4. §=50; w=0,1098

¥
15
10 /' g 2
-10 \\h_ e
15 . . . : - 1,

Fig. 5. §=100; w = 0.0469

Puc. 5. §=100; w=0,0469
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Fig. 6. S=500; w=0.0068

Puc. 6. §=500; w=0,0068
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0

Fig. 7. Dependence of the recovery errors

on the volume at different levels of interference
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Fig. 8. §=100; w=0.042
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Fig. 14. §=200; /=5 %; w=0.0308

Puc. 14. §=200; /=5 %; w=0,0308
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Fig. 12. §=100; /=5 %; w = 0.0602 Fig. 13. §=100; /=10 %; w = 0.0845
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Fig. 15. §=200; /=10 %; w=0.0011

Puc. 15. §=200; /=10 %; w=0,0011
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For descriptive reasons, we will change places of y;
and x; in estimation (9) in fig. 16, 17. We will be convinced
that estimation differs a bit at points of intersection of the
graph and an abscissa axis as could seem from fig. 10—13.

We will demonstrate the work modified algorithm (10),
under the following conditions: at a disturbance level
equal to 5 and 10 %; with a sample size equal to 100 ele-
ments; in the mode of the sliding examination. Comparing
errors of reconstruction we look at fig. 12, 13 and 18, 19
and we see a small improvement.

In fig. 18, 19 we see that an error of reconstruction is
a little less than in fig. 12, 13. This means that nonpara-
metric estimation has became more accurate.

Also in a case with a more composite function in fig.
20, 21 it is visible that an error of reconstruction is a little
less than in fig. 14, 15. This means that nonparametric
estimation has became more accurate.

Ay
15 4
E —>2
10 % el _
i "o ™ > 1
5§ i
!
o 1 1
s |
!
10 | L
1s |
4 10 5 0 _ S5 10 15"
Fig. 16. §=500; /=5 %; w=0.0283
Puc. 16. S=1500; /=5 %; w= 10,0283
i
Iv.
15
[
10 .//'"‘ ‘--\-\.\ P2
s 1/ \
!
0 1 1
< \ !
5 A J
E .
-10 2
=15 -
15 10 -5 0 5 10 15™

Fig. 18. §=100; /=5 %; w=0.057

Puc. 18. §=100; /=5 %; w= 0,057

It should be noted that: with decrease of an error
reconstruction (w) the accuracy of estimation increases;
with the increase of a sample size (s) the error of recon-
struction (w) decreases; the size of an error grows
at increase of a disturbance level (1).

The following question is possible: “Why was the
circle used to check the work of an algorithm?”, because
there are a lot of more composite shapes, and the answer
is simple — the chsracteristic of this algorithm is its uni-
versality. This means that it is not essential for an algo-
rithm what function to reconstruct, whether it is a circle,
an ellipse, an Archimedes spiral or a Cassini’s oval.
“Being fixed” in the previous x, point, that is in a x,
point, and following the sense of a rotation, it is always
possible to get a nonparametric estimation of mutually
ambiguous functions.

10

o

i
s

-
> o \
F
/
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-10 Te—
_]_( L I T R . ]
15 <10 -5 o 5 80 35
Fig. 17.5=500; /=10 %; w = 0.055
Puc. 17. §=500; /=10 %; w= 0,055
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Fig. 19. §=100; /=10 %; w = 0.0817

Puc. 19. §=100; /=10 %; w=0,0817
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Fig. 20. §=200; /=5 %; w=0.0301
Puc. 20. §=200; /=5 %; w=0,0301

Conclusion. The main result of the present article is
an introduction of a new class nonparametric estimation
of mutually ambiguous functions from observations with
errors. It distinguishes the problems of nonparametric
estimation from the known nonparametric estimates of the
function of Nadaraya-Vatsona regression. Some modifica-
tions of nonparametric estimates are given, under such
conditions the attention is drawn to a method of bypassing
of entered nonparametric estimates along a trajectory
determined by elements of the training sample.

For simplicity of a numerical research the function
described by a circle was taken, though it is not essential
to the offered algorithm. In other words, the algorithms
offered are suitable for reconstruction of the ambiguous
dependences described by more composite curves, the
character of which is apriori unknown, only a sample
of observations of the studied process is known.
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