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The article presents the application of network Intellectual Property cores (IP cores) software-driven verification
method for network infrastructure devices in the system-on-chip microprocessor (SoC) used as verification environ-
ment. The SoC used for verification is a reference system since it consists of previously fully verified and approved IP
cores which interact in this system correctly and accurately. Sofiware of a reference system generates test inputs and
processes responses to them which are received from a verified device. Conclusions of executed or unexecuted tests are
generated on the basis of the expected results. A set of expected results of input action is a reference model
of a verified IP core.

General architecture of a verification system of a network device IP core has a form of a classic test loop. The vari-
ants of verification architecture given depend on the type of a verified network device: an individual network codec,
a network protocol controller or a network switch. The presented architectures show the simplicity of software-driven
verification. The test environment naturally results from the reference SoC model and test software developed in such
high-level programming language as C/C++.

When the software-driven verification of an IP core takes place in reference SoC environment, the test sofiware con-
sists of two types of tests: directed tests and restricted-random tests. Successive use of both the given types of tests and
typical scenarios of network devices interaction which include request-reply packages transmission between
network nodes provides high coverage of a verified IP core with test situations. To check fault tolerance function it is
supposed to use the scenarios of network devices interaction in conditions of possible faults made by predetermined
introducing of errors into packages transmitted over the network connections. Program tests which are developed and
proved during the IP core model verification are completely ready to be used in hardware SoC prototype including the
given IP core in the programmable logic device.

The presented approach to functional verification was used for IP cores testing in SpaceWire network infrastruc-
ture: a fault tolerance codec, a RMAP protocol controller and a routing switch.

Keywords: Intellectual Property cores, functional verification, software-driven verification, reference SoC, verifica-
tion architecture of intellectual property cores.
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IIpeocmasneno npumeneHue memooa NPOSPAMMHO-YRPAGNAEMOU 8ePUPUKAYUU CTIOHCHODYHKYUOHATLHBIX OIOKO8
(CD-6510K08) ycmpoticme cemegoli uHppacmpykmypsl 8 MUKponpoyeccoproli cucmeme Ha kpucmaine (CHK), ucnonv3sye-
Mot 8 kauecmae cpedbl 014 npogedenus sepuguxayuu. Hcnonvzyemasn ona eepuguxayuu CHK aensemcs 5manoHHol,
MAK KaK OHA COCMOUm U3 panee NOJHOCMbIO 8ePUPUYUPOSAHHBIX U anpobuposantbix CD-6710K08, Komopuvle capanmu-
PosanHo npasunvHo u 6Ge3owudbouno 6 el 3aumoodeticmgyiom. Ilpospammmnoe obecneyenue dmManoHHOU CUCHEMb
svipabamvisaem mecmosvie 8030elicmeus u 0opabamvigaem peakyuu Ha HUX, ROJyHaemvle Om 6epuPGUYUPYemMozo ycm-
poticmea. 3axniouenus o 6bINOJHEHUU UNU HEBLINOIHEHUU MeCo8 8blpabamulearOmMcs UCX00 U3 0HCUOAEMBIX
pe3ynvmamog. CO8OKYNHOCHb 0XCUOAEMBIX PE3VIbIMAMO8 HA 6X0OHblE 8030€UCEUs COCMAGIIAEN. JIMANOHHYI0 MOOENb
sepuuyupyemoco CO-6n0ka.

Obwasn apxumexkmypa cucmemvl gepugpuxayuu CP-010ka cemegoeo ycmpoucmea umeem 6U0 KiACCUYeCKou
mecmogoti nemau. I[lpueedenvl apuarmsl apxumexkmypvl epuPuKayull 8 3a6UCUMOCIIU OM BUOA 6EPUPUYUDYEMO20
cemegoeo ycmpoucmea: OmoenbHblll cemegoll KOOeK, KOHMPOIEp Cemego20 NPOMOKONA Ul Cemesoll KOMMYMAamop.
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Ilpedcmasnennvie apxumexmypvl 0eMOHCIMPUPYIOM NPOCMOMY RPOSPAMMHO-YIpasisemou gepuguxayuu. OKpysicenue
Mecmuposanusl NOJY4aemcs ecmecmeeHnbiM 0opazom uz modenu smanonnoti ChK u mecmosozo npozpammnozo odec-
newenust, paspabomanHo20 Ha 8blCOKOYPOBHEBIX A3bIKAX NPpocpammuposanust, 0oviuno C/C++.

Ipu npoepammno-ynpasnaemoii gepugpuxayuu CD-o10Ka 8 cpede smanontoti CuK mecmogoe npoecpammuoe odec-
neueHue cocmoum u3 08yx U006 MeCmos: HANPAGIEHHbIX U 0ZPaAHUHeHHO cyyalnbix. [lociedosamenvioe UCnonb306aHue
OaHHBIX BUO0E MECTNUPOBAHUSL, 4 MAKI’CE MUNOBIX CYEHAPUEE G3aAUMOOEUCIBUs. YCMPOUCME 8 Cemu, 3aKII0YaAIOWUXCsl
8 NOCHIIKAX Ceputl 3anPOCHbIX U OMBEMHbIX NAKEMO8 MedCOy V3NaMu, obecneuusaem blCOKOe NOKpbimue gepuguyu-
pyemozo CD-6n0xa mecmosvimu cumyayusimu. [l npoeepku (pyHKyull OmKazoycmoudugoCcmu npeoiazaemcs Ucnoib-
308aMb CYEHAPUU B3AUMOOCUCIBUSL Y3108 8 YCIOBUSIX B03MOICHBIX CO0EB, BHOCUMBIX NYMEM NPEOHAMEPEHHO20 6HECEHUs.
owuboK 8 nepedasaemvle uepes cemeguvle coeOuHeHus nakemol. IIlpoepammuvie mecmol, pazpabomanmvie U OMIAANCEHHbIE
6 npoyecce sepugpuxayuu mooenu CD-610Kka, NOIHOCMbIO 20MOBbL K npumenenuio 6 annapamuom npomomune CHK,
sxmrouarowel 0anuvitl CO-010K, 8 ycmpoucmee npocpamMmmupyemo 102UKU.

Ilpeocmagnennviii n00X00 K NpogedeHuo GYHKYUOHANbHOU 8epudpurayuu Obll UCHOIL306AH 0N MeCMUPOBAHUs.
C®-6510K08 Ons ungppacmpykmypol cemu SpaceWire: omxazoycmouuugo2o kooexka, KoHmpouiepa npomokoia RMAP
U MaApupymusupyroue20 KoMmMymamopd.

Kniouegvie cnoea: croscnopynxyuonanvivie OI0KU, DYHKYUOHANbHAS BEPUPUKAYUS, HPOSPAMMHO-YNPAGILAEMAs
sepugurayus, SMAIOHHAS CUCTNEMA HA KPUCMATLTE, CXeMbl 8ePUDUKAYUU CEMEBBIX CLOHCHOPYHKYUOHATLHBIX OI0KO08.

Introduction. Functional verification (FV) is intended  reactions to transactions are also converted into high-level
to serve for the validation of a designed device or an intel-  data saved as response tracks. The given test environment
lectual property core (IP-core) to set functional specifica-  creating simplifies the FV.
tions [1]. The FV significance rises together with the For test environment creating one can use both
increase of designed devices complexity. The FV com- programming languages such as C/C++ or assembler and
plexity also increases reaching 70 % of all development VHDL. The latter way belongs to autonomous IP-core
work [2]. Usually FV is performed on models of a designed ~ verification and is inherent in all RTL-simulators. A new
device and then models are converted into a hardware stage of its development is presented by such well-known
prototype which becomes a base for creating of a target ~methodologies as Open Verification Methodology (OVM)
digital device. and Universal Verification Methodology (UVM) [4; 5].

FV is divided into 2 large groups of methods: methods ~ To reduce the time spent on developing the test environ-
based on dynamic modeling or simulation (Simulation- ment and creating stimuli of any complexity they use such
Based Verification, SBV) of a model of Register-Transfer ~ an object-oriented system designing language as System
Level (RTL) [1; 2]; and Formal Functional Verification ~ Verilog and UVM class library.

(FFV) methods based on the representation of a verified Traditional programming languages are usually used
IP-core as other models that are not RTL, which are for IP-core verification within an entire system. For
called formal and used for logical fault finding [3]. SBV ~ ¢xample, a well-known approach for processor verifica-
is a traditional approach still having high priority because ~ tion is Instruction Set Simulation (ISS) [6]. The stimuli
a target device is synthesized from RTL-model created by =~ &€ program tests of verifiable processor instruction
Hardware Description Language (HDL). executing and result monitoring. ISS is more flexible:

FFV methods actively developed in recent years are it is used not only for system verification ‘put also for
additional and serve to avoid faults at early project stages, autonomous one on condition of corresp Ondmg prepara-
to detect faults not identified by SBV-methods; to carry tion as well as for hardware and software co-verification.
out formal provability of the errorless operation of a de- 'Such’ approach. is generally cglled Software-Driven
signed device. There are also so-called hybrid methods Verification (SDV) [7]. In special literature one can come

: . . . across another name — Processor-Driven Verification
using the combinations of different approaches. Hereinaf- .
ter the SBV-methods are used in the paper (PVD) [8]. The approach consists of IP-core RTL-model
In general terms SBV-method consists- of creating the connection to the full-function microprocessor system
. . ) MPS) model, for example system-on-chip (SoC), by the
test environment where RTL-model of Device Under Test ( ) » JOf X fp 4 1 . fp (. ), by
(DUT) is simulated. The test environment generates test standard bus and interface and later verification by MPS
. . . ; . . program tests.
inputs (stimuli) on the model in the form of different se- This paper presents the SoC system for software-
quences of '1nput 51gr}al sets anq apalyses TeSponses, O 4riven IP-core verification, where IP-cores are interface
model reactions, that is, changes in its state and its output

) . . . s devices.
values. The action described is provided by special The software-driven verification system. The over-
programs — RTL-simulators.

) . all architecture of IP-core verification system for network
At the present moment the simulation of complex

o ) ' ) devices has the form of a classic test loop, when the inter-
digital devices such as microprocessors or devices con-  ,.tion of a reference device and a tested one

nected to their internal bus is based on the Transaction g checked under the control of an operating device which
Level Modeling (TLM) concept [1; 2]. In this case the iy this case is a SoC processor with required test software.
stimuli are not specially-generated input signal sets but A codec test loop is first performed in the model and for
high-level interaction with DUT (bus exchange operations FPGA prototyping it is replaced by cable connection.

and input/output interface exchange, processor instruc- Depending on the type of network device to be veri-
tions, and network packages) converted into signals. DUT  fied — a network codec, a network protocol controller
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or a network switch - the architecture of the verification

system is modified.

Fig. 1 shows the architecture of network codec IP-core
verification system (DUT on fig. 1). All the other SoC
devices — a processor, an on-chip bus, and other devices
not shown in the figure for simplicity — are reference ones
in this case. It is supposed that reference IP-cores were
previously fully verified and approved; correctness of
their functioning is guaranteed; and they can be fully
trusted. The given IP-cores can be self-developed, pur-
chased as commercial products or obtained from informa-
tion resources as open products, but in any case their cor-
rectness is guaranteed. The entire SoC system consisting
of reference IP-cores which are guaranteed to correctly
and unerringly interact in it is a reference system. In
a reference system only one separate [P-core is verified

at a time.

The scheme presented in fig. 1 is intended for verifica-
tion of a new IP-core of a network codec, for example, its
fault-tolerant version, by a reference IP-core of a network
codec. The test inputs generated by test software are fed
to a verified IP-core network codec from two directions:
from an on-chip bus and a codec reference IP-core.

Verified IP-core responses to inputs impacts are also
processed by test software. The conclusion about exe-
cuted or unexecuted tests is based on the expected results.
The cumulative expected result is a DUT reference model

realized in a reference SoC.

The architecture of a verification system of a network
protocol controller IP-core is presented in fig. 2. A network
controller includes a reference network codec. The logic

Network
codec

L

Network connection

Network
codec
(DUT)

On-chip Bus

N

<]l 'l: Test
software

of a network controller is to be verified. The architecture
of network switch verification is built the same way (fig. 3).
The network switch has n reference network codecs equal
to the number of switch ports. A separate network con-
nection using the n network codecs of the reference SoC
is created for every switch port. Only the network switch
logic should be verified.

Presented architectures illustrate the simplicity of
software-driven verification. Test environment naturally
results from the reference SoC model and test software
developed in a high-level programming language, usually
C/C++.

Test software. According to general verification
methodology, if software-driven IP-core verification takes
place in SoC reference environment then the test software
consists of two test types: a directed test and a restricted
random test.

Directed software tests are designed manually. They
are used for initial testing of a verified IP-core basic
elements and its basic function as well as for checking
of hard to formalize and rare events [6]. Besides, directed
software tests allow recreating and checking the typical
scenarios of network device interaction which consists
of request-reply packages transmission between network
nodes.

To check fault tolerance function the network device
interaction scenarios can be practised in response to pos-
sible faults injected by predetermined fault introducing
into packages transmitted over the network connections.

Processor

Fig. 1. The architecture of a network codec IP-core verification system

Puc. 1. Apxurekrypa cucremsl Bepudukanun CD-6510ka ceTeBoro Kojuexka
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Fig. 2. The architecture of a verification system of a network protocol controller IP-core

Puc. 2. Apxutextypa cucremsl Bepudukarun CP-6510ka KOHTpOIIIEpa CETEBOr0 IIPOTOKOJIA

309



Cubupckuil scypHan Hayku u mexvoaoeui. Tom 18, Ne 2

Network switch N\
Network
» codec of
port 1
Network Network
» codecof > switch
port 2 logic o
(DUT)
Network .
—|of = » codec of <}::> 2
Slel g port n 2
§ § é S Processor
Sls| s Network K # N
8|8 S codec of <: NO Test
V] software
port 1
Network
» codec of <: :>
port 2
Network
» codec of <: :>
port n V

Fig. 3. The architecture of a verification system of a network switch IP-core

Puc. 3. Apxutekrypa cuctemsl Bepupukamnun CPD-6110ka ceTeBoro KOMMyTaTopa

The major part of detailed verification is performed by
restricted random verification based on the object-oriented
programming capability. The method of restricted random
(stochastic) testing is that the test sequence is generated
automatically according to a set template with parameter-
ized pseudorandom selection of test body instructions and
their arguments. The method key benefit is the opportu-
nity to fully automate tests generation and start-up proc-
esses, as well as the comparison of tests results which
is necessary for mass testing of complex IP-cores [9].

The advantage of the software-driven IP-core verifica-
tion by reference SoC is naturalness and simplicity. There
is no need to study specialized methodologies, language
aids and verification libraries, and then with their help to
create required verification environment and test inputs.
In this case the test environment results naturally from a
priori available reference SoC model created by a tradi-
tional designing language (VHDL, Verilog), and tests are
written in a high-level programming language C/C++,
studied in the course of preparation for all engineering
degrees at technical universities. The hardware and soft-
ware co-verification task is also naturally solved because
the program tests developed for IP-core verification be-
come the basis for operational software of a given IP-core
in a given SoC [10].

The restriction of this methodology usage is the ab-
sence of a reference SoC. Such a situation is possible
when a principally new SoC with a new processor and a
new on-chip bus is developed. But the situation is not
typical for the major part of IP-core development and
testing processes.

Verification results. Software-driven verification
method for a reference SoC and presented verification
system architectures are used to verify IP-cores of net-
work infrastructure SpaceWire [11]. The reference SoC
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as well as the other IP-cores except SpaceWire reference
codec are realized on the basis of LEON3 processor core
from the open library GR-LIB of Gobham Gaisler [12].
The open codec SpaceWire Light is used as a SpaceWire
reference codec [13]. SoC created on the basis of GR-LIB
IP-core base can serve as a reference one. Gobham
Gaisler Company has a good reputation, its concepts have
piloting capacity and are realized both in FPGA and in
ASIC.

The architecture presented in fig. 1 is used for
SpaceWire fault-tolerant codec verification; the one pre-
sented in fig. 2 — for RMAP protocol controller verifica-
tion [14], and the one presented in fig. 3 — for a routing
switch of SpaceWire network.

Verification process is performed in two stages:
the first stage — verification on a model and the second
one — verification by FPGA prototype. Testing by FPGA
implementation allows both detecting errors that were not
detected during the model verification, and making sure
of IP-core functional specification values for a specific
FPGA [15]. In this process the test software which was
used for model verification is fully used for FPGA proto-
type verification which is an important advantage of soft-
ware-driven verification in a reference SoC. Further the
developed test software can be used for target VLSI test-
ing, including a reference SoC and a verified IP-core.

Conclusion. The software-driven IP-core verification
method with a reference SoC provides flexibility and va-
riety of possible ways of creating test software; it does not
create disparity between verification and synthesis; it pro-
vides the SoC hardware and software co-verification; it
provides software test portability when tests are created
during the verification process of an IP-core model in
a computational model on a SoC FPGA-prototype includ-
ing this [P-core.
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Software-driven verification architecture with a refer-
ence SoC realizes the classic test loop regardless of a veri-
fied network device type. Developed modifications of
software-driven verification system with a reference SoC
are used for IP-core testing in SpaceWire network:
a fault-tolerant codec, a RMAP protocol controller and
a routing switch.
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