Cubupckuil scypHan Hayku u mexvoaoeui. Tom 18, Ne 4

UDC 001.8
Siberian Journal of Science and Technology. 2017, Vol. 18, No. 4, P. 706-710
RESEARCH INTO THE METHODS OF SOFTWARE PRODUCT DEVELOPING AND MAINTAINING
Zh. S. Abenova'’, M. N. Petrov’

'JSC “National Company “Kazakhstan Gharysh Sapary”
National Space Centre, 89, Turan Av., Astana city, 010000, The Republic of Kazakhstan
*Reshetnev Siberian State University of Science and Technology
31, Krasnoyarsky Rabochy Av., Krasnoyarsk, 660037, Russian Federation
“E-mail: zhuza44@mail.ru

Currently the development of information and Open Source technologies for the implementation of critical business
functions in fields of national economy, including space industry becomes relevant. However, as experience shows there
is no uniform method for the process of developing and operating the software product using Open Source technology.
The aim of the article is to study classical and modern models and technologies of software analysis and design. It will
help choose the optimal model for the development of the method for creating a prototype information system using
Open Source technology, and also to define the design environment and the tasks of implementing the prototype of the
information system. The article considers a summary table which allows to choose efficient model for developing the
method of building the information system, taking into account the specifics of the free software products.

Keywords: software, information system, model software development.
Cubwupcxkwuii xxypHan Hayku u TexHojoruid. 2017. T. 18, Ne 4. C. 706-710

HNCCIIEJOBAHUE METO/OB ITPOLHECCA PASPABOTKH
N IKCIINIYATAIIMUA TPOI'PAMMHOI'O ITPOAYKTA

K. C. A6erosa'", M. H. ITetpos®

'AO «Hanuonansnas komnanns «Kasakcran Fapeim Canapbn
Kazaxcran, 010000, r. Acrana, npoct. Typan, 89, HarmoHnanpHbIi KOCMUYECKUN IIEHTP
*CubupcKuii rocy1apCTBEHHBIN YHHBEPCHTET HAYKH H TEXHOJIOIHMH MMeHH akajemuka M. @. PemerHesa
Poccuiickas @enepanms, 660037, r. KpacHosipek, npoct. uM. ra3. «KpacHosipckuit pabounii», 31
“E-mail: zhuza44@mail.ru

B nacmosiwee epemsi sienisemcs akmyanbHblM pazeumue UHOOPMAYUOHHBIX MEXHON02UL C NPUMEHEHUEM MeEXHOO0-
euti Open Source 0115 peanusayuy KpUmu4ecKu 8axiCHouiX OusHec-QyHKYuil 8 chepax HapoOOHO20 X03ANCMEd, 8 MOM HUC-
s1e kocmuyeckoti ompacau. OOHAKo, KAk NOKA3bleaem Onvlm, OMCYmMCmayem eounds Memoouxa npoyecca paspabomu
U IKCHIYamayuu npocpammHozo npooykma ¢ npumenenuem mexuonoeuti Open Source. Llenvlo cmamvu sensiemcst u3y-
YeHue KIACCUYecKUX U COBPEMEHHbIX MoOenel U MEXHOL02UL AHATU3A U NPOEKMUPOBAHUSL NPOZPAMMHBIX CPeOCm8. Imo
NO360AUM 8bIOPAMb ONMUMALLHYIO MOOelb 01 pA3PAbOMKU MEMOOUKU N0 CO30aHUI0 NPOMOMUNA UHGOPMAYUOHHOU
cucmemvl, ucnoavsylouwyio mexuoaoeuu Open Source, a maxaice onpedeiums cpedy NPoeKmuposanusi U 3a0ayu peau-
3ayuu RPOMoOmMuna UHGOpMayuonnol cucmemel. Paccmampusaemces c6o0nas mabauya, KOmopdas no3eousiem eublopanms
ONMUMATLHYIO MOOeNb 015 pa3pabomKu MemoOuKy NOCMPOeHUs UHPOPMAYUOHHOU CUCTHEMbL C YYemoM Cheyuuru
C80000HBIX NPOSPAMMHBIX NPOOYKMOB.

Kniouesvie cnosa: npoepammnoe obecneuenue (I10), ungpopmayuonnvie cucmemot, modens paspadvomxu 110.

Introduction. Information technologies are one of
most dynamic developing areas of science, technology
and engineering, besides they are included in the list of
critical technologies, which contributes to the improve-
ment and continuity of new solutions, aimed at creating
advanced information systems [1]. Therefore, the applica-
tion of an integration environment of information coop-
eration (IEIC) based on Open Source technology in the
aerospace segment is an actual solution that will solve the
issues of information support in managing projects of
various complexity and direction, regardless of the sub-

706

ject’s location. IEIC system is the cheapest one and has
all necessary functions and capabilities, taking into ac-
count tight budget and human resource constraints. In this
respect, in order to form the information environment of
the IEIC it is necessary to investigate the basic strategies
and their models for the process of developing and putting
into operation a software product. This will enable to
choose the most effective design model of the IEIC sys-
tem development, to define the design environment and to
describe the project characteristics, the concept and the
tasks of implementing the IEIC prototype [2].

Mamemamuxka, mexanuxa, ungopmamuxa

Analysis of the efficient method selection for the

IEIC system creation and development.
According to the Russian software development stan-
dards, there are three basic strategies: cascading, incre-
mental and evolutionary models [3]. The cascading strat-
egy is a linear sequential design approach for software
development; the incremental strategy assumes that the
requirements for the software product are implemented
gradually, each time expanding a product utility; in the
evolutionary strategy, the requirements are not fully de-
fined, but are dynamically refined during the development
of software product versions [4; 5].

Figure shows basic models of the basic software
development strategy.

However, although there are many different models
and ways of software products development, there is no
single method that describes the Web resource develop-
ment model using Open Source technologies, such as De-
velopment of IEIC. Therefore, to select a life cycle model
Software Quality Institute in USA recommends to classify
the project and to identify the main parameters that will
be the key factor to select the model of software develop-
ment [6]. These include:

| Cascaie

1

=

| Strategy |

=2

Incremental |

1. Requirement parameters for the project. This cate-
gory can include the possibility to set up requirements for
software at the beginning of the software life cycle, to
determine the probability of changes and additions to the
requirements for the software development lifecycle.

2. Parameters of the project working team. This category
determines the novelty of technologies and the novelty of
toolbox development for developers.

3. User profiles. This category identifies the degree of
users involvement in the development process and their
relationship to the project team, determines the degree of
user involvement in the process of developing software
and acquaintance of users with the problems in the proc-
ess of the software life cycle.

4. Parameters of project types and risks. This category
reflects the complexity of the project, estimates the re-
sources for its execution, identifies problems in the soft-
ware domain and determines requirements for reliability
levels and other criteria [7].

Based on the above said a summary table that includes
all categories of project parameters is suggested. Table
will help to choose suitable model of software lifecycle
for a particular project [8—10].

Evolutionary

, l |

In the cascade A special case of the The iterative model The incremental The spiral model In the evolutionary RAD maodel (Rapid
maodel, the process cascade model is the is a model of medel combines the combines iteratively model, the software is Application

of soffware Vomodel and relates software cascade model and the and phasing, but with developed in the form Development

P 8. Pe! P

development is ta the modemn development process iterative model. In this an emphasizs on risk of a sequence of Model) is a model
considersd as a methods of snft\}'.arr where all work is nmd?l. full analysis. The whole blocks n.f structures, of application
flow, which passes development, The performed with a requirements for the process of product and requircments are development that
all stages of the 1l:uin purpese of Ehc : T devel of the de\'clu.pule.n.l in the setinpart and refined can support both
process of crealing V-modelisa Ep[_i_nlmugs of the obtamed s?ﬂlwm Ipwduul. are plane is divided mto 4 in each Isubscqucm. incremental amd
A software testing in the — When divided into wvarious quadrants. Fach intermediate block of avolitonay
-{'nnqlstmﬂg Ti’l? carly stages of the 1rl"m'in'; I ne'.(t cycles. If neccssary, quadrant iz a scparatc the structure of the stenfeir 5F sORHTE
d' '-l i i project. Each stage t - tﬁ the cycle is divided stage of software system. dev !‘"“ -t 1
EYCRDET TIOVES has a different type of stage, e mto smaller modules. development. The life The use of the kit vl i

from one stage to
the next stage only
alter completing the
current slage., The
stage is considerad
complete if the
documentation
describing the
results of the
performed work is
created, and
describes methods
and implementation
plans for the next
stage.

test coverage of the
developed software.

requirements for
software product
development are
being finalized. As a
result, it is not

excluded the
possibility of new
restrictions.

Each eycle passes the
stages of requirements
definition, design,
development, testing
and commissioning.
The completion of the
first cyele is finished

cyele of the developed
software product s
displayed on the planc
in the form of spiral that
starts from planm

evolutionary model
implies a research of
subject area to study
the needs of the

stage and passes each
quadrant. At the output

project and
to study the analysis
of the possibility of

1991, 1. Martin has
published a book
which expounded
the concept and the
possibility of using
the model of rapid
software

working product of the next round of the using this medel for development. This
version in the base spiral is a ready-lested impl 1 model is a common
configuration. The prototype of the paltern to create

subsequent cycles are
completed by adding
and improving of new
functions, the so-
called winorementan.

software. The process
until the prototype
meets all requiremnents.

development tools
software,

Software development models

Models of software engineering

Ne Classification parameters Model development of life cycle of the software product
Cascading | V-model | Iterative | Incremental | Spiral| RAD | Evolutionary

1 Are requirements for the project defined and Yes Yes Yes Yes No | Yes No
feasible?

2 Can requirements for the project be determined Yes Yes Yes Yes No | Yes No
at the beginning of the software life cycle?

3 Do you need to demonstrate requirements for No No No No Yes | Yes Yes
clear understanding?

4 Is it necessary to check the concept of the soft- No No No No Yes | Yes Yes
ware product?

5 Can the requirements be changed or added in No No Yes Yes Yes | No Yes
the process of the software life cycle?

707

Cubupckuil scypHan Hayku u mexvoaoeui. Tom 18, Ne 4

End table
Ne | Classification parameters Model development of life cycle of the software product
Cascading | V-model | Iterative | Incremental | Spiral| RAD | Evolutionary

6 Is there a need to implement requirements in the No No No Yes Yes | Yes Yes
carly stages of software development?

7 Are the tasks of the subject area of the project No No Yes No Yes | No Yes
new to the project team?

8 Are the tools for the implementation of the pro- No No Yes No Yes | No No
ject new to the project team?

9 Can participants change roles in the process of No No Yes Yes Yes | No Yes
software lifecycle development project?

10 | Is in the process of the software lifecycle evolu- Yes Yes No Yes Yes | No Yes
tion and validation stage of software develop-
ment needed?

11 | Will users participate in the process lifecycle? No No Yes Yes Yes | No Yes

12 | Will users evaluate the current status of the No No Yes Yes Yes | No Yes
software in the process of software develop-
ment?

13 | Will users be involved in all phases of the soft- No No Yes No Yes | Yes No
ware life cycle development?

14 | Will users track the progress of the project? No No Yes No Yes | No Yes

15 | Is the software being developed new to the No No Yes Yes Yes | No Yes
company?

16 | Will the project be an extension of the existing Yes Yes No Yes Yes | Yes No
system?

17 | Will the project be large-scale? No No Yes Yes Yes | No Yes

18 | Will the project be medium or small-scale? Yes Yes No No No | Yes Yes

19 | Will the product life cycle be long-lasting? Yes Yes Yes Yes Yes | No Yes

20 | Is a high level of product reliability necessary? No Yes Yes Yes Yes | No Yes

21 | Is it planned to upgrade and develop the product No No No Yes No | No Yes
during the operation phase?

22 | Is the timetable tight? No No No Yes No | Yes Yes

23 | Will the functions and modules be reused? Yes No No Yes No | Yes Yes

24 | Is the project budget tight? No No No No No | No Yes

25 | Are the software developers sufficiently compe- Yes Yes Yes Yes Yes | Yes Yes
tent?

26 | Can costs be required to purchase additional No No Yes Yes Yes | Yes Yes
equipment and tools for project implementa-
tion?

27 | Can additional costs be required to attract No No Yes No Yes | Yes Yes
highly qualified employees?

28 | Have such software products been implemented Yes No No No No | Yes No
in the enterprise before?

29 | Will new technologies or new approach be used No Yes Yes Yes Yes | No Yes
in the development process?

30 | Is it necessary to conduct analysis of existing No No Yes Yes Yes | No Yes
technologies for software development?

31 | Is it necessary to develop a prototype of the No Yes No Yes Yes | Yes Yes
software product in the early stages of the prod-
uct life cycle?

32 | Is the software unique? No No Yes No Yes | No Yes

33 | Is the software part of the system? Yes Yes No No Yes | No No

34 | Is the software a stand-alone solution? No No Yes Yes No | Yes Yes

According to table the cascade model is more suitable
when the requirements are known, straightforward and
documented, and there are no problems with the availabil-
ity of programmers of necessary qualifications [11-13].
This model can be used in relatively small projects, in the
redevelopment of typical software (for example, the de-
velopment of an electronic document management, ac-
counting system, etc.). The cascading model can be used
in case of migrating of existing software to a new plat-
form or when launching a new version of software if the
changes are minor and clearly defined. The advantage of

this model is that each stage is completed with certain
documentation that meets the criteria of completeness and
consistency. Therefore, there is no need to return to the
previous stages. All work is performed in strict order.
This approach allows to schedule deadlines, and accord-
ingly plan the costs of each stage in advance. The disad-
vantage of the model is the complexity of switching be-
tween stages [14].

The V-model fits better when requirements are de-
fined and documented, thorough testing is required. The
model is suitable for medium and small-scale projects,

708

Mamemamuxka, mexanuxa, ungopmamuxa

provided that qualified programmers, including testers are
involved. The advantages of this model include require-
ments setting prior to development, tests planning and
system verification at the early stages of software devel-
opment, special importance is given to time management.
However, there are disadvantages: the model does not
imply the work with parallel events; there is no possibility
to introduce requirements for dynamic changes at differ-
ent stages of the software life cycle. The model can be
used mainly in projects with tight time or financial con-
straints, also in such projects where there is an extensive
coverage of the test tasks.

The iterative model can be used for large-scale pro-
jects, when the requirements for the final system are
clearly defined and understood, but can be modified over
time. That is, the model implies that the main task must
be defined, and implementation details may change during
the development of the software product over time.

The incremental model is the most suitable when basic
requirements for the system are clearly defined and if the
software needs early introduction on the market, however,
there is a possibility of revision over time. This model can
be used in long-term projects at low or medium risks.
Also, the model is suitable for projects where new tech-
nology can be applied. This will allow the user to adapt to
the software product being developed by executing
smaller incremental steps at specific time intervals. The
advantage of this model is that the result of each incre-
ment is the working functional product and a customer
has the opportunity to evaluate each developed version of
the software. Firstly, it is supposed to develop and im-
plement the main function of the platform in the model
and only then increase it. This will reduce the risks of
failures and risks of over-expenditures, as the main func-
tionality of the system can be determined at the early
stages of development. The disadvantages of the model
include the fact that at the initial stage it can be difficult to
define a complete efficient system which makes it diffi-
cult to make up the increments.

The spiral model is suitable for complex and expen-
sive projects, where it is required to carry out analysis for
impact evaluation after each step. If software develop-
ment involves the use of new technology and success is
not guaranteed, then the spiral model should also be used.
This model is appropriate for development of new series
of software products, where it is important to analyze the
risks and costs. In the model it is possible to return to the
left behind stages to reflect over the changes in costs of
risks. The advantages of the model include step by step
specification requirements and conducting a risk analysis
of the project, which allow to identify design errors at the
early stages of software development, creation of working
prototypes at the early stages and availability of com-
pleted software development process documentation, as
well as the ability to add new features even at the later
stages of the software life cycle. A complex project can
be developed in parts, highlighting the most important
requirements at different stages. The disadvantages of the
spiral model include the dependence of success of the
development process on the stage of risk analysis and
high cost of software development, because risk manage-

709

ment requires the involvement of sufficiently qualified
specialists.

The RAD model can be used only in the presence of
highly qualified specialists as this model is suitable for
confident knowledge of the target business and the need
for urgent production of system [15]. This model is ap-
propriate for projects where the budget is large, in order
to pay for professional service. Also, this model can be
used in projects where there is very little risk; the soft-
ware product being developed can be modeled and has
relatively low performance; and when it is required to
minimize duration of software product development. The
advantages of this model include reduction of the cycle
time and the number of developers by using powerful
tools. Already in the early stages of software development
a prototype of product, which further increases the effi-
ciency of the developed components, is created. The dis-
advantages include rigid time management for software
development, and the need to attract highly qualified pro-
fessionals who are able to work with the necessary soft-
ware tools.

In the evolutionary model, requirements for the soft-
ware product can be specified gradually. The main em-
phasis is put on the development of the software proto-
type, then a complete understanding of product require-
ments. The advantages of this model are:

— identification of software utility at the initial stage;

— staff recruitment on demand;

— dividing of system into incremental components.

The disadvantages of this model are limited opportu-
nities for long-term resource mobilization [3; 9].

Conclusion. Analysis the best model selection deter-
mined the evolutionary model as the most suitable one for
the IEIC development. Advantages of the evolutionary
model include the fact that the product is developed in the
form of separate designs, but unlike the incremental
model, requirements cannot be initially determined com-
pletely. In this model, specification of requirements is
allowed partially and is specified with each subsequent
design. Since the specificity of the development of the
IEIC platform lies in the fact that at the initial stage there
are no exact formulations for the platform requirements,
so accordingly, there are no specific tasks for the devel-
opment of the IEIC, and there is no unified design for
commissioning of similar systems developed with the
help of the Open source technology. In this regard based
on the processes of the evolutionary model, it is necessary
to work out a methodology for constructing the IEIC,
taking into account the specifics of the web resource and
free software products development, and for the existing
technologies analysis, their functions and characteristics
for developing and maintaining the IEIC.

References

1. Software Development Methodology Today. Soft-
ware Development Strategies and Life-Cycle Models
[Electronic source]. URL : http://www.informit.com/
articles/article.aspx?p=605374&seqNum=2 (accessed Octo-
ber 16, 2017).

2. Inyushkina O. G. Proektirovanie informatsionnykh
sistem (na primere metodov strukturnogo sistemnogo

Cubupckuil scypHan Hayku u mexvoaoeui. Tom 18, Ne 4

analiza) [Designing information systems (using the meth-
ods of structural system analysis)]. Ekaterinburg, Fort-
Dialog Iset’ Publ., 2014, 240 p.

3. State Standard 15271-2002. Information technol-
ogy. Guide for the application of GOST R ISO/IEC
12207 (Software life cycle process). Moscow, Standartin-
form Publ., 2004. 45 p.

4.STB ISO/IEC 12207-2003. Information technol-
ogy. Software life cycle processes. Minsk, Gosstandart
Respubliki Belorus’, 2003. 52 p.

5. State Standard 12207-2010. Information technol-
ogy. System and software engineering. Software life cycle
process. Moscow, Standartinform Publ., 2004. 100 p.

6. State Standard 9126-93. Information technology.
Software product evolution. Moscow, Standartinform
Publ., 2004. 13 p.

7. STB ISO/IEC 9126-2003. Information technology.
Software product evolution. Quality characteristics and
guidelines for their use. Minsk, Gosstandart Respubliki
Belorus’, 2003. 16 p.

8. Kaner S. at al. Testirovanie programmnogo obe-
specheniya. Fundamental'nye kontseptsii menedzhmenta
biznes-prilozheniy [Software testing. Fundamental con-
cepts of business application management]. Kiev, DiaSoft
Publ., 2001, 544 p.

9. Bakhtizin V. V. Tekhnologiya razrabotki program-
mnogo [Software development technology]. Minsk,
BGUIR Publ., 2010, 267 p.

10. Vendrov A. M. Proektirovanie programmnogo
obespecheniya ekonomicheskikh informatsionnykh sistem
[Designing of software for economic information sys-
tems]. Moscow, Finansy i statistika Publ., 2005, 544 p.

11. Marka D. Metodologiya strukturnogo analiza
i proektirovaniya SADT [Methodology of structural analy-
sis and design]. Moscow, MetaTehnologiya Publ., 2003,
243 p.

12. Orlov S. Tehnologiya razrabotki programmnogo
obespecheniya [Technology software development]. Saint
Petersburg, Piter Publ., 2002, 464 p.

13. A Guide to the Project Management Body of
Knowledge (PMBOK). — Upper Darby: PMI Standards
Committee. 1996. Available at: http:/www.softwareresearch.
net/fileadmin/src/docs/teaching/SS06/PM/PMBOKINTRO.
pdf (accessed 17/11/2017).

14. Bijay K. Jayaswal, Peter C. Patton. Software De-
velopment methodology today. September 22, 2006.
Available at: http://www.informit.com/articles/article.
aspx?p=605374&seqNum=2 (accessed 17/11/2017).

15. Kupriyanov A. V. Tekhnologii proektirovaniya
programmnykh produktov [Software design technology].
Samara, Publishing house of the Samara State Aerospace
University, 2006, 72 p.

Bbubauorpaguyeckue cCblIKH

1. Software Development Methodology Today. Soft-
ware Development Strategies and Life-Cycle Models
[DnexTponnsnii pecypc]. URL: http://www.informit.com/
articles/article.aspx?p=605374&seqNum=2 (mara oOpa-
menust: 16.10.2017).

2. Unromikuna O. I. TlpoextupoBanue HHpOpMAIH-
OHHBIX CHCTEM (Ha IIpUMepe METOAOB CTPYKTYPHOTO CHC-
TeMHOTO aHamu3a) : yd4e0. mocobme. ExatepunOypr :
®opt-uanor Ucers, 2014. 240 c.

3.TOCTP NCO/M3K TO 15271-2002. Hudopma-
IIMOHHAS TEXHOJOrusi. PyKOBOACTBO MO NPUMEHEHHUIO
I'OCT P MCO/M3K 12207 (IIpormecchl >XKU3HEHHOTO
[UKJIA MPOTPAMMHBIX cpencTB). M. : M31-Bo cTaHIapToB,
2004. 45 c.

4. CTb UCO/M3BK 12207-2003. MudpopmaroHHbie
TEXHOJIOTHH. Hpoueccm JKU3HCHHOI'0 1HHUKJIa Iporpam-
MHBIX cpeacTB. MuHck : ['occrannaprt Pecriyonuku bena-
pycb, 2003. 52 c.

5.TOCT P UCO/M3K 12207-2010. Mudopmarnmon-
Hast TexHosiorus. CHCTeMHas W NPOTpaMMHAsi MHKEHe-
pus. Ilpomeccsl KHM3HEHHOTO IMKIA MPOrPaMMHBIX
cpencts. M. : M3x-Bo cranmapros, 2004. 100 c.

6.TOCT P MCO/MDBK 9126-93. HNudpopmarmonHas
texHosorus. OIeHKa MpOorpaMMHON MPOAYKIUH. Xapak-
TEPUCTUKHU KAa4eCTBa U PYKOBOJCTBA IO UX MPHUMEHEHHIO.
M. : U3a-Bo cTannaptos, 2004. 13 c.

7.CTb MCO/MDBK 9126-2003. MNudpopmanroHHbIE
TexHosoruu. OLeHKa MporpaMMHON mpoaykuuu. Xapak-
TEPUCTUKHU KA4eCTBa U PYKOBOJICTBA IO MX IMPUMEHEHHIO.
Munck : I'occrannapt Pecriy6nmuxu benopycs, 2003. 16 c.

8. Kanep C., ®onk [Ix., Hryen Ear Kek. TectupoBa-
HHE IPOTrpaMMHOro obecrnedyeHus. PyHIaMEHTaJIbHbIC
KOHLIENIIMK MEHEIKMEHTa OW3HEC-TPIIOKEHUH :@ TIep.
¢ auryn. Kues : JluaCodr, 2001. 544 c.

9. baxtuzun B. B. TexHonorus pa3pabOTKH Mporpam-
MHOTO obecneueHus : y4ue0. mocobue. Munck : BI'VUP,
2010. 267 c.

10. Beaapos A. M. IlpoexTtupoBanue NporpaMMHOIO
obecrieueH s SJKOHOMUUECKUX MH(DOPMAIIMOHHBIX CUCTEM !
y4eOHHK. 2-¢ u3l., mepepad. m gom. M. : DuHaHCH
u crartuctuka, 2005. 544 c.

11. Mapka J. A., MakI'oysn K. SADT. Metononorus
CTPYKTYPHOI'O aHaiu3a U npoekTupoBaHus. M. : Mera-
Texnoiorus, 2003. 243 c.

12. Opnos C. TexHomorus pa3zpabOTKH IPOTrPaMMHOTO
obecneuenns : yueOnuk. CII0. : [Tutep, 2002. 464 c.

13. A Guide to the Project Management Body
of Knowledge (PMBOK) [9nekrponnsiii pecypc]. Upper
Darby: PMI Standards Committee. 1996. URL:
http://www.softwareresearch.net/fileadmin/src/docs/teachi
ng/SS06/PM/PMBOKINTRO.pdf (mata oOpameHus:
17.11.2017).

14. Jayaswal B. K., Patton P. C. Software Develop-
ment methodology today [DmekrponusIii pecype]. 2006.
September 22. URL: http://www.informit.com/articles/
article.aspx?p=605374&seqNum=2 (mata oOpameHHs:
17.11.2017).

15. KympusaoB A. B. TexHomoruu mpoeKTHPOBAHUS
MPOTPaMMHBIX MPOAYKTOB : yueb. mocobue. Camapa :
Wzn-Bo Camap. roc. aspokocmud. yH-Ta, 2006. 72 c.

© Abenova Zh. S., Petrov M. N., 2017

	СибЖНТ
	1.1

