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Researches presented in the paper are devoted to parametric modelling of multidimensional processes of discrete-
continuous type in the condition of priori information lack. Similar processes occur in the space industry, for example,
in the manufacture of products based on electronic components. The article considers multidimensional processes with
unknown mathematical description. Using parametric approach, we choose the structure of investigated process with
the accuracy to within parameters, and the next step is to estimate the model parameters from the available sample of
observations of the process input and output variables. The paper examines the case when due to the lack of priori
knowledge about the object an error is allowed at the stage of parametric structure choosing. The relative approxima-
tion error is used to estimate the model accuracy, which shows the difference between model and object outputs.
A comparative analysis of several parametric models for one investigated object is carried out is. Using the method
of least squares we obtain estimates of the parameters. The paper presents the results of a series of computational
experiments illustrating the dependence of the modelling error on the object noise level, as well as on the sample size
of observations of the input and output variables.

One of the obvious parametric models advantages is the ease of its applying. However, if the dimension of the input
variables vector is high, the process has a complex structure, and there is no priori information about the object structure,
then it is difficult to use parametric methods. In this case, it is advisable to use nonparametric identification methods.
In this paper we use a nonparametric estimation of the regression function on observations of Nadaraya-Watson as an
estimate of the process output variable. However, such estimates require a large number of initial data, also they are
sensitive to various kinds of defects in the initial samples of observations. Besides that, the paper compares nonpara-
metric model with parametric one for the investigated process.
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Ilpedcmaenennvie uUccie008anus NOCGAUEHbL NAPAMEMPULECKOMY MOOCTUPOBAHUIO MHOSOMEPHLIX NPOYECCO8
OUCKPEMHO-HEeNPEPbl6HO20 MUNA 8 YCI08UAX HedoCcmamka anpuoprou ungopmayuu. [10006H020 poda npoyeccol
BCPEUAIOMCA 8 KOCMUYECKOU OMPACIU, HANpUMep, Npu npouseoocmee uz0eautl INeKmpoHHOU KOMNOHEHMHOU 6a3bl.
Paccmampueaemcest MHO2OMEPHbIIL NPOYECC, MAMEMAMULECKOe ONUCAHUe KOMOpo20 ocmaemcst Heuzgecmuvim. [Ipu
napamempuyeckomM nooxooe CMPYKmypa UCCIe0YeMO20 NPoYeccd 6blOUpaemcs. ¢ MOYHOCHbIO 00 NaApamempos,
a Ha credyioujem dmane Npoucxooum OYeHKa Napamempos Mooeiu no umerowelcs ebloopke HaAONOO0eHUll 6XOOHbIX
U BLIXOOHBIX NEpeMeHHbIX npoyecca. Paccmampugaemces ciyuai, K020a 6ciedcmeaue HedOCmamkd anpuopHuiX 3HaAHUL
00 06vexme Ha smane 8blOOPA NApPAMEeMpULecKoll CmpyKkmypsl 0onyckaemcs ouwudxa. Tounocms mMooenu oyeHusaemcs
€ NOMOWBIO OMHOCUMENLHOU OUWUOKU ANNPOKCUMAYULU, KOMOPAsL NOKA3bIBAEN, HACKONLKO COOMEENCMEYem 3HAYeHUe
ebIx00a Modenu 6bixody obvexma. I[Ipoeooumcs cpasgHUMeNbHbII AHAIU3 HECKOIbKUX Napamempuieckux mooenei Ois
00HO020 uccredyemozo obvekma. Oyenku napamempos Obiiu NOAYYEeHbL ¢ HOMOWbIO MEMOOd HAUMEHLUUX KEAOPAmMO8.
IIpusedensl pe3yriomamol cepuu 8bIYUCTUMENbHBIX IKCNEPUMEHNO8, WITIOCHMPUPYIOWUEe 3a6UCUMOCb OWUOKY MOOeU-
POBAHUsL OM YPOBHS WyMa 00beKma, a makdice om obvema evlO0PKU HAOMOOEHUN XOOHBIX U 8bIXOOHLIX NEPEMEHHBIX
npoyecca.

OO0HUM U3 OHEeBUOHBIX NPEUMYUWECTNE NAPAMEMPULECKUX MOOeell AGIAEMCs. NPOCMOMA ux ucnonbsosanusi. OOHako
eciu pasmMepHOCb 8eKMOopa 6XOOHbIX NEPEMEHHBIX BbLCOKA, NPOYECC UMEENL CILOJNCHYIO CIPYKMYpPY U HEM anpuopHOl
ungopmayuu o cmpykmype 00beKma, mo UCHOIb308AMb NAPAMEMPUUECKUE Memoobl 3ampyOHuUmensHo. B smom
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cnyuae yenecooOpasHo NpuMeHamb Henapamempuyeckue mMemoovl udenmuguxayuu. B xavecmee oyenku 6bIx0OHOU
nepemennou npoyecca OblNA UCNONL30BAHA HENAPAMEMPUHECKAs OYeHKA QYHKYuU pezpeccuu nO HAOMOOeHUAM
Haoapas—Bamcona. Oonako maxozo poda oyenku mpedyiom 00Ibui020 KOIUYECHBA UCXOOHBIX OAHHbIX, ABNAIOMCI
YYBCMEUMENbHbIMU K PA3IUYHO20 POOd HeOOCIMAMKAM 8 UCXOOHbIX 8bl00pKax HabaroOeHull. [Iposeden cpagnumenvhbill
auanus pabomul HeNApamMempu4eckoll U Rapamempuieckoli Mooeau 0 00HO20 UCCedYeMO20 Npoyecca.

Kniouegvie crosa: napamempuueckas udenmuguxayus, anpuopras ungopmayus, OUCKPemHO-HENnPepbleHble NPo-

yeccol.

Introduction. When researching different processes
or phenomena, it is necessary to build models, since we
are not always able to conduct experiments with real ob-
jects. Herewith various methods of mathematical model-
ling and identification theory are used. These methods
are relevant for studying processes in different branches
of human activities (technological, socio-economic proc-
esses, etc.). For instance, designing of space vehicles
or liquid rocket engines [1; 2].

It is really important to qualitatively determine the
mathematical model of the process at the initial stages
of the system investigation. These days higher standards
of system control are being set. In order to correspond
to them, it is necessary to conduct a lot of research and
experiments to ensure the construction of an adequate
mathematical model of the considering system and to find
a more accurate model structure of the object.

Each stage of identification requires different methods
due to increasing of the amount of incoming information
obtained from the research results. Depending on the
amount of information available about the investigated
object, the most appropriate method is chosen. Methods
for mathematical models determining from the results of
experimental researches are the subject of identification
theory [3].

Based on the foregoing, it should be added that the
construction of a mathematical model depends on the
amount of priori information. In this regard, there are two
approaches to identification: in a “narrow” and a “broad”
sense. For problems in a “narrow” sense there is a vast
amount of priori information, whether it is the structure
of the system or the class of models to which it refers.
This problem statement is close to real conditions and
is more applicable in engineering practice [3].

In the “broad” sense of the identification problem
there is clear deficit of priori information, or we have
access to information only about a qualitative nature
object. These methods are time-consuming as they require
detailed consideration in each individual case because
of the individual features of the objects under study [3].

In conditions of parametric uncertainty parametric
identification methods are basically used. Such methods
at the first stage assume the determination of the model
structure from the available priori information about the
object accurate to a parameter vector, which are later es-
timated with known methods [4]. With parametric model-
ling, there are cases when priori information is not enough
to accurately determine the structure of the model, which
can lead to significant errors. In the worst case this can
lead to large inaccuracies at the stage of formulating the
identification task, which results in an absolutely wrong
solution. This problem led to the development of non-
parametric identification methods, which have prolifer-
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ated in recent years [5]. Surely, non-parametric methods
allow analysis without using the object model equation.
They are more universal and work with greater uncer-
tainty in priori information, this can not be said about
parametric methods [6]. However, under conditions of
sufficient information parametric methods give better
results.

A large number of scientists, both in Russia and
abroad, starting from the middle of the twentieth century
conducted their studies related to the problem of system
identification, since at those particular years it was really
significant to broaden knowledge in the field of control [7]. It
is commonly believed that Professor Eykhoff P. (Holland)
was the first person who systematized the knowledge
of the whole variety of identification algorithms and
methods. In his monograph [7] he describes the basic
concepts of the model, identification problem setting and
gives key methods for solving problems for various
classes of objects. His book may be useful for those who
are working on construction or analysis of processes
or phenomena models nowadays. A bit earlier two Profes-
sors Andrew P. Sage and James L. Melsa from the USA
wrote their book [8], which considers the most well-
known methods of identification back then and also con-
ducts their in-depth analysis. Not less important person
among foreign scientists who contributed to the develop-
ment of identification theory is Professor D. Grop (USA).
His book [3] complements the knowledge and informa-
tion which is presented in the book of two Professors
Andrew P. Sage and James L. Melsa bringing his new
results in the field of identification, and also considering
a wider class of different methods that allow us to deter-
mine the parameters and structure of the mathematical
model.

In Russia the knowledge in the identification sphere
was systemized a bit later than abroad, closer to the end
of twentieth century. One of the first scientists who wrote
a book about constructing mathematical models of com-
plex control objects was Professor N. S. Raibman. In his
pamphlet [9], as the author himself called it, N. S. Raib-
man describes some of the basic concepts and methods
of identification which are intended basically for non-
specialists in the control sphere. Thus, the professor tries
to popularize the understanding of the methodology for
constructing mathematical models. We would also like to
mention proceedings of Professor Sh. E. Shteynberg, who
tried to summarize the overwhelming majority of identifi-
cation methods, possible to be used in engineering prac-
tice. His book [10] is aimed at considering the methods
which are implemented in industrial enterprises, where
there are some missed measurements, noise in the object,
the correlation of this noise in time with each other.
Therefore, it is applicable to specialists developing
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control systems. However, the professor’s proceedings
can be also useful for an ordinary student. Among other
things we should say about the Russian scientist, who
made a great contribution to the development of identifi-
cation and whose work would be wrong not to mention.
It is Professor Ya. Z. Tsypkin. His book [4] can be called
fundamental as it describes a large range of nuances that
appear during the identification algorithms formation.
Also, the question of the most optimal identification algo-
rithms selection is considered from various sides. In addi-
tion, the “Information Theory of Identification” is a more
modern book that was published at the very end of the
twentieth century, which emphasizes its relevance to the
present days.

Nowadays, there is an active development of the theory
of identification in all directions. Thus, in his work [11]
L. P. Myshlyaev and coauthors suggest presenting the
identification system as a closed-loop dynamic system
where the controlled object is the structure of the object
model. This approach will help to avoid using adaptive
control methods which are effective only for certain
classes of objects. A wide application of parametric iden-
tification is found in electromechanical systems. For
example, in the paper [12], a parametric identification
algorithm of an induction motor with a cage rotor
is given, where in some cases it is difficult to obtain
information about the values of parameters on the basis of
catalogued data or to determine them experimentally with
the use of special devices. Therefore, the question of con-
structing a parametric model is quite relevant in this case.

For particularly complex technical and human-
technical systems, intelligent control systems are used that
combine a large number of different identification meth-
ods what is very important in today’s rapidly developing
conditions and a huge flow of information. V. B. Trofi-
mov and S. M. Kulakov write about such systems in their
work [13]. The authors present the theoretical and applied
fundamental basis of intelligent control systems and also
offer to familiarize themselves with algorithms that allow
solving the actual tasks of various complex systems moni-
toring and control. Similar studies have already been
conducted earlier in the field of parametric identification.
The results are presented in [14].

l‘ (v

The Problem Statement. The main goal of the paper
is to obtain a parametric estimate of the investigated dis-
crete-continuous process. The case when an error was
made at the stage of choosing the model structure was
studied. In addition, a nonparametric estimation of the
investigated process was constructed. The obtained results
are compared with the parametric identification method.
The generally accepted flowchart of the investigated dis-
crete-continuous process is shown in fig. 1, where the
following notation is used: A is an unknown object func-
tional; y(1)eQ(y)cR' is an output process variable; u(f) =
=), i=1, ..., m)eQ(u)cR™ is a vector input stimulus;
{(?) is a vector random stimulus; ¢ is a continuous time;
H', B are communication channels; 4"(¢), #*(f) are ran-
dom measurements noise; {u;, y;, i =1, ..., s} is a training
sample, where s is a sample size.

Computational experiment. Suppose that the exam-
ined object in the computational experiment framework is
described by the following equation:

(@) =0y () +a,-[u, o1 +
+ oy -sinfus (0] + oy - uy (1) +E(), (1

where (a4, 0, 03, 04) = o — are the coefficients of the stud-
ied object; {(#) — is noise with mean value equals zero
which was generated in the following way:

&) = y(1)-c(0)-k, 2
where c(¢) — is a normal distributed random variable in the
interval of [-1;1]; k — is the noise level.

Let us assume the model equation has the following form:

F1(1) = Gy uy (1) + 6y [, (O] +

+ Gy - sinfuy ()] + Gy -1, (7). 3)

Next, we suppose such situation when in the model-

ling process an error was made in the structure with u,

and then the following equation now describes the model:
o (1) = Gy 1y (1) + 6y [, ()] +

+ Gy -sinfuy (£)]+ Gy -1, (1) @)

1 t
u ) > Object (A) 40 >
Y
Y— w0 w(1)
e [e— — 3 g
u, l Vi

Fig. 1. Flowchart of investigated process

Puc. 1. Cxema mcciegyeMoro npomecca
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The next step is to estimate the parameters &,, &,,
0, and &, based on the available sample {y;, uy;, uz;, us;,

uy, i =1, ..., s}. There is a large number of methods for
obtaining parameter estimates, for example, the least-
squares criterion (hereinafter LS criterion). We will use
this criterion. The least-squares criterion is presented
below:

. 1 . .
F(&)= ;-Z(y,- - $;)* ——>min, (5)
i=1 a

where 3, — are model output values; &:(&1,&2, a5,
G, ) —are unknown coefficients.

Let us assume the relative approximation error,
according to which the deviation of the output values of
the models from the output values of the object will be
calculated, in the following form:

1< o
*Z()’i _)’i)z
W= S iz

T -
—_— m,—y;
5-1;:1( YY)

where 71, — is the expectation estimation of the object

(6)

output.
The form of the nonparametric model constructed for
the examined process is presented below [15]:

o[
5](u):i=1 ::1 Cy ’
s u.—u.

Se " ")

i=l j=1 Y

N

(7

where ¢, — a blur parameter and ®(¢) — a kernel function
satisfy convergence conditions [15].
Kernel ®(*) has the parabolic form:

©.75-(1-|2])°, |7|<1,

The computational experiment demonstrates the influence
of the error, which was made at the stage of selecting the

model parametric structure on the final [Jodeling results.

As the first experiment, we generate the output of the ob-
ject (1), in which the input variables u;, j =1, ..., 4, are set
by uniform-distributed law pseudorandom numbers in the
interval of [0,3]. The coefficients of the investigated
object will be taken as: a; = 7, ap = 3, a3 = 10, oy = 11.
Using LS criterion (5) for (3) and (4) we get the values of
the object estimated coefficients. Substituting these values
in (3) and (4) we obtain the values of the model outputs.

In fig. 2 the results are represented, where each time-
step corresponds to the values of the object and model
outputs obtained from the condition that the sample size is
s =100, and the noise level is 5 %.

The relative approximation error for the model (3)
calculated using (6) equals: W, = 0.09, but for model (4)
equals: W, =0.14.

Despite the fact that there is an error in the model
structure (4), the results which are shown in fig. 2, as well
as the value of the error W,, indicate that the model de-
scribes this object well. This can be explained by present-
ing the values of the coefficient estimates. For the model
3): &,=695, &,=3.038, &,=9.986, d&,=11.013,
for the model (4): &, =737, &,=1.06, G&;=11.37,
&, =11.19. As it is evident, the coefficients values at the

parameter u, differ the most. We construct a graph that
visualizes the dependence of the outputs (1), (3) and (4)
on the input variable u,. For the examined equations we
assume u(t) = us3(f) = uqg(t) = 1.5; u, will generate using
uniform distribution by pseudorandom numbers in the
interval of [0;3]. In fig. 3 the results of this experiment are
shown.

All above conclusions indicate a feature of the LS
criterion which is as follows: even if the model structure
is chosen incorrectly at first, the criterion will try to cor-
rect it by decreasing or increasing one or another coeffi-
cient to make the final model output correspond to the

O(z) = (8)  object output in the best way.
0, |Z | >1, The error value (6) can change due to a different sam-
—u ple size. In fig. 4 we consider the dependence of these
where z = L. parameters on each other for models of the form (3) and (4)
Cs ata 5 % noise level.
4 Y
80
60 Object (1 . -//
ject (1) =
40t s
T Model (3)
20 ,/f Model (4)
] t
0 + t t i —
0 20 40 60 80 100

Fig. 2. Graphical dependence of the object (1) and the models (3), (4) outputs in each time-step

Puc. 2. I'paduxk 3aBucuMOCTH BBIX010B 00BeKTa (1) 1 Moneneit (3), (4) B KaXKIblil TAKT BpeMEHH
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The above given results (fig. 4) show that with the
sample size increase, the modelling error tends to one
average value.

Among other things, the error (6) changes when the
noise level is changed. We investigate this dependence for
a sample size s = 100 and summarize the results in tab. 1.

According to the results given in tab. 1, we can as-
sume that for the model (3) and model (4) the error in-
creases with the noise level increase, but for the second
case it is more.

As the second experiment, we generate an object with
input variables u;, j = 1, ..., 4 which are set using uniform
distribution by pseudorandom numbers in the interval of
[3;3]. Similar to the first experiment, we graph the object
output (1) dependence on the models outputs (3) and (4)
at a 5 % noise level and the sample size s = 100, which is
shown in fig. 5.

Relative approximation error (6), for the model (3)
equals: ;= 0.03 and for the model (4) equals: W, = 0.42.

The values of the coefficient estimates for the second
experiment are as follows. Model (3): &,=7.012,
0, =299, G,=10.029, a,=10.984; model (4):
&, =645, a,=0.12, 4, =984, &, =9.82.

In this case, the interval of input variables generation
had a more significant effect on the final output results of
the model (4), which is evident in the error value W, and
fig. 5.

Similar to the above experiment in fig. 6, the graph
that shows the dependence of the outputs (1), (3) and (4)
on the input of the variable u, is given. For the examined
equations we assume u(f) = u3(f) = uy(f) = 1.5, however,
now u, will be generated by pseudorandom numbers in
the interval of [-3;3].

&Y
1 Model (3) P
604 Bt
) '/i;.-.. -
] Object (1) s :."f .
- P
sot N . . A -,
T e
.t:i ._;:; e
s Model (4
404 AP+ . 4
: R .L‘_ = . _I‘_. -
15
30 : — t . : —»
0 1.0 2.0 3.0
Fig. 3. Dependence of the models (3), (4) and object (1) on u, outputs
Puc. 3. 3aBucumocTs 3HaYeHNUI BEIX00B Mozeel (3), (4) u o6bekra (1) oT u,
AW
i Model (4) e
013§ N e ——
G—" -
] Model (3)
0.10+
] ~a —O_ D R
e T - T e
1 &
0.07 — . : —
0 20 40 60 80 100

Fig. 4. Relative approximation error graph for different sample sizes

Puc. 4. I'paduk OTHOCHTENFHON OIIMOKH BOCCTAHOBIICHHUS TIPH PA3IHUYHBIX 3HAUCHUAX 00BbeMa BEIOOPKU

Table 1

Dependence of the relative approximation error on different noise levels

W, error of the model with correct structure (3) W, error of the model with incorrect structure (4)
Noise level 3 % 0.0611 0.1057
Noise level 5 % 0.0851 0.1356
Noise level 10 % 0.1583 0.1883
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The results which are shown in fig. 6, once again indi-
cate that the estimation value of the model (4) coefficient
Q, calculated with the criterion (5), is practically equal to

zero. Besides that, on the basis of fig. 6 it can be seen that
the most qualitative description of the object (1) by the
model (4) is only in the interval [-1;1]. Going beyond the
limits of this interval, the residual error increases.

Similar to the first experiment, we consider the influ-
ence of the sample size on the error value (6) at a 5 %
noise level, which is shown in fig. 7.

The results in fig. 7 are similar to the results of the first
experiment. The only difference is that for the model (4)
the error value (6) has increased.

Now we consider the error value (6) for the different
noise levels using sample size s = 100. The obtained re-
sults are summarized in tab. 2.

It can be seen from the results presented in tab. 2, the
changed interval of generating input object variables af-
fected the error values. For the model (3) a growth in the
level noise from 3 % to 5 % as well as from 5 % to 10 %
almost twice increases the error value. For the model (4)
the error value also increases with noise level increasing,

A
80 ¢+

40§
[ Object (1)

however, because of its large values, this becomes not
essential.

As the third experiment, we implement nonparametric
modelling of the object (1). The values of the input
variables u;, j = 1, ..., 4, as in the previous experiments,
we will generate pseudorandom numbers using uniform
distribution in the intervals of [0;3] and [-3;3].

In the first case (interval [0,3]), we make nonparamet-
ric estimate (7) for which the value of the optimal blur
parameter ¢, = 1.1 was calculated. For the second case
interval [-3;3] ¢, = 2.4. Below, fig. 8 and fig. 9 show the
results of nonparametric modelling on the assumption that
the sample size is s = 100, the noise level is 5 %.

In addition, the error value (6) for different noise
levels was calculated. For convenience, we summarize the
results in the tab. 3.

Based on the results which are given in tab. 3, we can
conclude that the error value (6) for parametric model (4)
where the input variables are generated in the interval of
[3,3] is higher than for the model (7). In other cases, the
error value (6) for the nonparametric model is higher.

Model (3)

A ‘II

w/\/\/\

.-"‘ uV‘

. Model (4)

t

T T

0 20 40

T T

60 80 100

Fig. 5. Graphical dependence of the object (1) and the models (3), (4) outputs in each time-step

Puc. 5. I'paduk 3aBucumoctr BoixozoB (1), (3) u (4) B KaXIplil TAKT BPEMEHU
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1 . Model (3)
E N .
60 ¢ '\\_ Object (1) v'.
s * \.-\ .e ""-.... - # '
-_ 5, \. -7{
sok Model (4) N . .«
i et . z-’.'
o . \, ."t\{._.- . B g:!:!:
L — .l“x..___ - L
40 + T— —_— L. . 3 . ? *
[ I “.-1——.——.""' ;u . —_—
[ *s sn . ——
i T
30 : : : . . : —
4 -3 -2 -1 0 1 2 3

Fig. 6. Dependence of the models (3), (4) and object (1) outputs values on values u,

Puc. 6. 3aBucumocts 3HaueHUH BeIX00B (1), (3) u (4) OT 3HAUCHUH U,
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w
061
Model (4) /@\

T e e

: \ = S
04 e/_-e/
021 Model (3)
0.0 —— = 5 S
T 0 20 40 60 80 100

Fig. 7. Relative approximation error graph for different sample sizes

Puc. 7. rpaq;)I/IK OTHOCHUTEJILHON OLIMOKHM BOCCTAHOBJICHUS IIpH pa3JINYHBbIX 3HAYCHUIX o0bema BBI60pKI/I

Table 2
Dependence of the relative approximation error on different noise levels
W, error of the model with correct structure (3) W, error of the model with incorrect structure (4)
Noise level 3 % 0.0151 0.4086
Noise level 5 % 0.0265 0.415
Noise level 10 % 0.0587 0.4651
AY
70 + —~
60 & Model (7) . /;"U\r
PN
50 1 VoV
40 § AT .
30 + ,'-
20 -ﬁ-ﬂ/ \. Object (1)
10 ';}
t
0 F + ; } + ' ] + y + } + + ; ¥ + —
0 20 40 60 80 100

Fig. 8. Graphical dependence of the object output (1) and the model output (7)
in each time-step for the interval of generating the input variables [0;3]

Puc. 8. I'paduk 3aBucuMocTH Beixoaa o0bekTa (1) u Beixoma moaenu (7)
OT BpEMEHH JJIs1 HHTEPBajia TeHEPUPOBAHUS BXOJHBIX IepeMeHHbIX [0;3]

AY
70 + L
] Model (7) pavave
“f — LT
50 + Ay \j_‘ﬁ';f W
40 § ff%\ '
30 P S
20 _ﬁ_ﬂ,/‘/ Y, Object (1)
10 ',/
t
03 —— — — ———t
0 20 40 60 80 100

Fig. 9. Graphical dependence of the object output (1) and the model output (7)
in each time-step for the interval of generating the input variables [-3;3]

Puc. 9. I'pacduk 3aBucuMocTH BeIxoaa o0bekTa (1) 1 Beixoaa moaenu (7)
OT BpEMEHH JAJIsl UHTEpBajla TeHEPUPOBAHUS BXOJHBIX IEPEMEHHBIX [—3;3]
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Table 3

Dependence of the relative approximation error on different noise levels
for the nonparametric model

The error value (6) of the nonparametric model
for the generation interval of input variables [0;3]

The error value (6) of the nonparametric model
for the generation interval of input variables [-3;3]

Noise level 3 % 0.268 0.279
Noise level 5 % 0.283 0.314
Noise level 10 % 0.328 0.359

Conclusion. Based on the results of the research,
it can be concluded that the minor error made in the process
of the model structure definition for one variable does not
greatly affect the final results of the model output, since
the least-squares criterion neutralizes the error by select-
ing the required coefficients.

The second experiment results showed us that under
certain modelling conditions (for example, the modelling
range of input variables values), a model with an error
in the structure will describe the object inadequately.

The increase in the sample size affects the error value
to a less extent, and with a further increase in the number
of observations, this value tends to a specific, average
value. The noise levels considered in this work have some
effect on the error value.

The third experiment results showed us that the non-
parametric model estimates the investigated object accu-
rately enough, but it cannot compete with the correct
structure parametric model. Despite this, it is more appro-
priate to use the nonparametric model in conditions
of priori information lack. This fact is confirmed by this
experiment, the results of which showed that the value of
the modelling error for a parametric model with incorrect
structure is higher than for a nonparametric model.
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